ترغب بنشر مسار تعليمي؟ اضغط هنا

BPS Skyrme neutron stars in generalized gravity

245   0   0.0 ( 0 )
 نشر من قبل Christoph Adam
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the coupling of nuclear matter described by the BPS Skyrme model to generalized gravity. Concretely, we consider the Starobinsky model which provides the leading-order correction to the Einstein-Hilbert action. Static solutions describing neutron stars are found both for the full field theory and for the mean-field approximation. We always consider the full Starobinsky model in the nonperturbative approach, using appropriately generalized shooting methods for the numerical neutron star calculations. Many of our results are similar to previous investigations of neutron stars for the Starobinsky model using other models of nuclear matter, but there are some surprizing discrepancies. The Newtonian mass relevant for the surface redshift, e.g., results larger than the ADM mass in our model, in contrast to other investigations. This difference is related to the particularly high stiffness of nuclear matter described by the BPS Skyrme model and offers an interesting possibility to distinguish different models of nuclear matter within generalized gravity.

قيم البحث

اقرأ أيضاً

First proposed in 2013 by Yagi and Yunes, the quasi-universal emph{I-Love-Q relations} consist of a set of relations between the moment of inertia, the spin-induced quadrupole moment and the electric quadrupolar tidal deformability of neutron stars w hich are independent of the Equation of State (EoS) within an accuracy of $sim1%$. In this work, we show that these relations hold for different Skyrme-based nuclear matter EoS and also for the star-like solutions of different Einstein-BPS-Skyrme-models, some of which do not even present a barotropic equation of state. Further, other quasi-universal relations are analyzed, and together with recent GW observations, we use them to select the generalized Skyrme model that better reproduces observations. Our results reaffirm both the universality of the emph{I-Love-Q} relations and the suitability of generalized Skyrme models to describe nuclear matter inside neutron stars.
We propose a new equation of state for nuclear matter based on a generalized Skyrme model which is consistent with all current constraints on the observed properties of neutron stars. This generalized model depends only on two free parameters related to the ranges of pressure values at which different submodels are dominant, and which can be adjusted so that mass-radius and deformability constraints from astrophysical and gravitational wave measurements can be met. Our results support the Skyrme model and its generalizations as good candidates for a low energy effective field-theoretic description of nuclear matter even at extreme conditions such as those inside neutron stars.
We study generalized Misner-Sharp energy in $f(R)$ gravity in a spherically symmetric spacetime. We find that unlike the cases of Einstein gravity and Gauss-Bonnet gravity, the existence of the generalized Misner-Sharp energy depends on a constraint condition in the $f(R)$ gravity. When the constraint condition is satisfied, one can define a generalized Misner-Sharp energy, but it cannot always be written in an explicit quasi-local form. However, such a form can be obtained in a FRW universe and for static spherically symmetric solutions with constant scalar curvature. In the FRW universe, the generalized Misner-Sharp energy is nothing but the total matter energy inside a sphere with radius $r$, which acts as the boundary of a finite region under consideration. The case of scalar-tensor gravity is also briefly discussed.
The Hamiltonian formalism of the generalized unimodular gravity theory, which was recently suggested as a model of dark energy, is shown to be a complicated example of constrained dynamical system. The set of its canonical constraints has a bifurcati on -- splitting of the theory into two branches differing by the number and type of these constraints, one of the branches effectively describing a gravitating perfect fluid with the time-dependent equation of state, which can potentially play the role of dark energy in cosmology. The first class constraints in this branch generate local gauge symmetries of the Lagrangian action -- two spatial diffeomorphisms -- and rule out the temporal diffeomorphism which does not have a realization in the form of the canonical transformation on phase space of the theory and turns out to be either nonlocal in time or violating boundary conditions at spatial infinity. As a consequence, the Hamiltonian reduction of the model enlarges its physical sector from two general relativistic modes to three degrees of freedom including the scalar graviton. This scalar mode is free from ghost and gradient instabilities on the Friedmann background in a wide class of models subject to a certain restriction on time-dependent parameter $w$ of the dark fluid equation of state, $p=wvarepsilon$. For a special family of models this scalar mode can be ruled out even below the phantom divide line $w=-1$, but this line cannot be crossed in the course of the cosmological expansion. This is likely to disable the generalized unimodular gravity as a model of the phenomenologically consistent dark energy scenario, but opens the prospects in inflation theory with a scalar graviton playing the role of inflaton.
We investigate the effect of massive graviton on the holographic thermalization process. Before doing this, we first find out the generalized Vaidya-AdS solutions in the de Rham-Gabadadze-Tolley (dRGT) massive gravity by directly solving the gravitat ional equations. Then, we study the thermodynamics of these Vaidya-AdS solutions by using the Minsner-Sharp energy and unified first law, which also shows that the massive gravity is in a thermodynamic equilibrium state. Moreover, we adopt the two-point correlation function at equal time to explore the thermalization process in the dual field theory, and to see how the graviton mass parameter affects this process from the viewpoint of AdS/CFT correspondence. Our results show that the graviton mass parameter will increase the holographic thermalization process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا