ترغب بنشر مسار تعليمي؟ اضغط هنا

$Hrightarrow gammagamma$ as a Triangle Anomaly: Possible Implications for the Hierarchy Problem

217   0   0.0 ( 0 )
 نشر من قبل Jennifer Kile
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Standard Model calculation of $Hrightarrowgammagamma$ has the curious feature of being finite but regulator-dependent. While dimensional regularization yields a result which respects the electromagnetic Ward identities, additional terms which violate gauge invariance arise if the calculation is done setting $d=4$. This discrepancy between the $d=4-epsilon$ and $d=4$ results is recognized as a true ambiguity which must be resolved using physics input; as dimensional regularization respects gauge invariance, the $d=4-epsilon$ calculation is accepted as the correct SM result. However, here we point out another possibility; working in analogy with the gauge chiral anomaly, we note that it is possible that the individual diagrams do violate the electromagnetic Ward identities, but that the gauge-invariance-violating terms cancel when all contributions to $Hrightarrowgammagamma$, both from the SM and from new physics, are included. We thus examine the consequences of the hypothesis that the $d=4$ calculation is valid, but that such a cancellation occurs. We work in general renormalizable gauge, thus avoiding issues with momentum routing ambiguities. We point out that the gauge-invariance-violating terms in $d=4$ arise not just for the diagram containing a SM $W^{pm}$ boson, but also for general fermion and scalar loops, and relate these terms to a lack of shift invariance in Higgs tadpole diagrams. We then derive the analogue of anomaly cancellation conditions, and find consequences for solutions to the hierarchy problem. In particular, we find that supersymmetry obeys these conditions, even if it is softly broken at an arbitrarily high scale.

قيم البحث

اقرأ أيضاً

We show that all the parameters which destabilize the weak scale can be taken around the weak scale in the MSSM without conflicting with the SM Higgs mass bound set by LEP experiment. The essential point is that if the lightest CP-even Higgs h in the MSSM has only a small coupling to Z boson, g_{ZZh}, LEP cannot generate the Higgs sufficiently. In the scenario, the SM Higgs mass bound constrains the mass of the heaviest CP-even Higgs H which has the SM like g_{ZZH} coupling. However, it is easier to make the heaviest Higgs heavy by the effect of off-diagonal elements of the mass matrix of the CP-even Higgs because the larger eigenvalue of 2 times 2 matrix becomes larger by introducing off-diagonal elements. Thus, the smaller stop masses can be consistent with the LEP constraints. Moreover, the two excesses observed at LEP Higgs search can naturally be explained as the signals of the MSSM Higgs h and H in this scenario. One of the most interesting results in the scenario is that all the Higgs in the MSSM have the weak scale masses. For example, the charged Higgs mass should be around 130 GeV. This looks inconsistent with the lower bound obtained by the b --> s gamma process as m_{H^pm}>350GeV. However, we show that the amplitude induced by the charged Higgs can naturally be compensated by that of the chargino if we take the mass parameters by which the little hierarchy problem can be solved. The point is that the both amplitudes have the same order of magnitudes when all the fields in the both loops have the same order of masses.
The COMPASS experiment recently discovered a new isovector resonance-like signal with axial-vector quantum numbers, the $a_1(1420)$, decaying to $f_0(980)pi$. With a mass too close to and a width smaller than the axial-vector ground state $a_1(1260)$ , it was immediately interpreted as a new light exotic meson, similar to the $X$, $Y$, $Z$ states in the hidden-charm sector. We show that a resonance-like signal fully matching the experimental data is produced by the decay of the $a_1(1260)$ ground state into $K^ast(Kpi)bar{K}$ and subsequent rescattering through a triangle singularity into the coupled $f_0(980)pi$ channel. The amplitude for this process is calculated using a novel method based on partial-wave projections. For the first time, the triangle singularity model is fitted to the partial-wave data of the COMPASS experiment. Despite having less parameters, this fit shows a slightly better quality than the one using a resonance hypothesis and thus eliminates the need for an additional resonance in order to describe the data. We thereby demonstrate for the first time that a resonance-like structure in the experimental data can be described by rescattering through a triangle singularity, providing evidence for a genuine three-body effect.
75 - Masatoshi Yamada 2020
We review the gauge hierarchy problem in the standard model. We discuss the meaning of the quadratic divergence in terms of the Wilsonian renormalization group. Classical scale symmetry, which prohibits dimensionful parameters in the bare action, cou ld play a key role for the understanding of the origin of the electroweak scale. We discuss the scale-generation mechanism, i.e. scalegenesis in scale invariant theories. In this paper, we introduce a scale invariant extension of the SM based on a strongly interacting scalar-gauge theory. It is discussed that asymptotically safe quantum gravity provides a hint about solutions to the gauge hierarchy problem.
We point out that in theories where the gravitino mass, $M_{3/2}$, is in the range (10-50)TeV, with soft-breaking scalar masses and trilinear couplings of the same order, there exists a robust region of parameter space where the conditions for electr oweak symmetry breaking (EWSB) are satisfied without large imposed cancellations. Compactified string/M-theory with stabilized moduli that satisfy cosmological constraints generically require a gravitino mass greater than about 30 TeV and provide the natural explanation for this phenomenon. We find that even though scalar masses and trilinear couplings (and the soft-breaking $B$ parameter) are of order (10-50)TeV, the Higgs vev takes its expected value and the $mu$ parameter is naturally of order a TeV. The mechanism provides a natural solution to the cosmological moduli and gravitino problems with EWSB.
Supersymmetric (SUSY) models, even those described by relatively few parameters, generically allow many possible SUSY particle (sparticle) mass hierarchies. As the sparticle mass hierarchy determines, to a great extent, the collider phenomenology of a model, the enumeration of these hierarchies is of the utmost importance. We therefore provide a readily generalizable procedure for determining the number of sparticle mass hierarchies in a given SUSY model. As an application, we analyze the gravity-mediated SUSY breaking scenario with various combinations of GUT-scale boundary conditions involving different levels of universality among the gaugino and scalar masses. For each of the eight considered models, we provide the complete list of forbidden hierarchies in a compact form. Our main result is that the complete (typically rather large) set of forbidden hierarchies among the eight sparticles considered in this analysis can be fully specified by just a few forbidden relations involving much smaller subsets of sparticles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا