ترغب بنشر مسار تعليمي؟ اضغط هنا

The Hierarchy Solution to the LHC Inverse Problem

132   0   0.0 ( 0 )
 نشر من قبل James Gainer
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Supersymmetric (SUSY) models, even those described by relatively few parameters, generically allow many possible SUSY particle (sparticle) mass hierarchies. As the sparticle mass hierarchy determines, to a great extent, the collider phenomenology of a model, the enumeration of these hierarchies is of the utmost importance. We therefore provide a readily generalizable procedure for determining the number of sparticle mass hierarchies in a given SUSY model. As an application, we analyze the gravity-mediated SUSY breaking scenario with various combinations of GUT-scale boundary conditions involving different levels of universality among the gaugino and scalar masses. For each of the eight considered models, we provide the complete list of forbidden hierarchies in a compact form. Our main result is that the complete (typically rather large) set of forbidden hierarchies among the eight sparticles considered in this analysis can be fully specified by just a few forbidden relations involving much smaller subsets of sparticles.



قيم البحث

اقرأ أيضاً

116 - Seth Koren 2020
We begin this thesis with an extensive pedagogical introduction aimed at clarifying the foundations of the hierarchy problem. After introducing effective field theory, we discuss renormalization at length from a variety of perspectives. We focus on c onceptual understanding and connections between approaches, while providing a plethora of examples for clarity. With that background we can then clearly understand the hierarchy problem, which is reviewed primarily by introducing and refuting common misconceptions thereof. We next discuss some of the beautiful classic frameworks to approach the issue. However, we argue that the LHC data have qualitatively modified the issue into `The Loerarchy Problem---how to generate an IR scale without accompanying visible structure---and we discuss recent work on this approach. In the second half, we present some of our own work in these directions, beginning with explorations of how the Neutral Naturalness approach motivates novel signatures of electroweak naturalness at a variety of physics frontiers. Finally, we propose a New Trail for Naturalness and suggest that the physical breakdown of EFT, which gravity demands, may be responsible for the violation of our EFT expectations at the LHC.
We point out that in theories where the gravitino mass, $M_{3/2}$, is in the range (10-50)TeV, with soft-breaking scalar masses and trilinear couplings of the same order, there exists a robust region of parameter space where the conditions for electr oweak symmetry breaking (EWSB) are satisfied without large imposed cancellations. Compactified string/M-theory with stabilized moduli that satisfy cosmological constraints generically require a gravitino mass greater than about 30 TeV and provide the natural explanation for this phenomenon. We find that even though scalar masses and trilinear couplings (and the soft-breaking $B$ parameter) are of order (10-50)TeV, the Higgs vev takes its expected value and the $mu$ parameter is naturally of order a TeV. The mechanism provides a natural solution to the cosmological moduli and gravitino problems with EWSB.
We construct a theory in which the solution to the strong CP problem is an emergent property of the background of the dark matter in the Universe. The role of the axion degree of freedom is played by multi-body collective excitations similar to spin- waves in the medium of the dark matter of the Galactic halo. The dark matter is a vector particle whose low energy interactions with the Standard Model take the form of its spin density coupled to $G widetilde{G}$, which induces a potential on the average spin density inducing it to compensate $overline{theta}$, effectively removing CP violation in the strong sector in regions of the Universe with sufficient dark matter density. We discuss the viable parameter space, finding that light dark matter masses within a few orders of magnitude of the fuzzy limit are preferred, and discuss the associated signals with this type of solution to the strong CP problem.
239 - Bei Jia , Jiang-Hao Yu 2014
To solve the doublet-triplet splitting problem in SU(5) grand unified theories, we propose a four dimensional orbifold grand unified theory by acting Z2 on the SU(5) gauge group. Without an adjoint Higgs, the orbifold procedure breaks the SU(5) gauge symmetry down to the standard model gauge group, and removes the triplet component of the fundamental SU(5) Higgs. In the supersymmetric framework, we show that the orbifold procedure removes two triplet superfields of the Higgs multiplets and leaves us with the minimal supersymmetric standard model, which also solves the hierarchy problem and realizes gauge coupling unification. We also discuss possible UV completions of the orbifold theories.
Recently Graham, Kaplan and Rajendran [1] proposed cosmological relaxation as a mechanism for generating a hierarchically small Higgs vacuum expectation value. Inspired by this we collect some thoughts on steps towards a solution to the electroweak h ierarchy problem and apply them to the original model of cosmological relaxation [1]. To do so, we study the dynamics of the model and determine the relation between the fundamental input parameters and the electroweak vacuum expectation value. Depending on the input parameters the model exhibits three qualitatively different regimes, two of which allow for hierarchically small Higgs vacuum expectation values. One leads to standard electroweak symmetry breaking whereas in the other regime electroweak symmetry is mainly broken by a Higgs source term. While the latter is not acceptable in a model based on the QCD axion, in non-QCD models this may lead to new and interesting signatures in Higgs observables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا