ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase diagram and critical behavior of the random ferromagnet $Ga_{1-x}Mn_xN$

44   0   0.0 ( 0 )
 نشر من قبل Tomasz Dietl
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Molecular beam epitaxy has been employed to obtain Ga1-xMnxN films with x up to 10% and Curie temperatures T_C up to 13 K. The magnitudes of T_C and their dependence on x, T_C(x) ~ x^m, where m = 2.2 +/- 0.2 are quantitatively described by a tight binding model of superexchange interactions and Monte Carlo simulations of T_C. The critical behavior of this dilute magnetic insulator shows strong deviations from the magnetically clean case (x = 1), in particular, (i) an apparent breakdown of the Harris criterion; (ii) a non-monotonic crossover in the values of the susceptibility critical exponent gamma_eff between the high temperature and critical regimes, and (iii) a smearing of the critical region, which can be explained either by the Griffiths effects or by macroscopic inhomogeneities in the spin distribution with a variance Delta x = (0.2 +/- 0.1)%.

قيم البحث

اقرأ أيضاً

We report the existence of Griffiths phase (GP) and its influence on critical phenomena in layered Sr$_2$IrO$_4$ ferromagnet (T$_C$ = 221.5 K). The power law behavior of inverse magentic susceptibility, 1/$chi$(T) with exponent $lambda = 0.18(2)$ con firm the GP in the regime T$_C$ $<$ T $leq$ T$_G$ = 279.0(5) K. Moreover, the detailed critical analysis via modified Arrott plot method exhibits unrealistic critical exponents $beta$ = 0.77(1), $gamma$ = 1.59(2) and $delta = 3.06(4)$, in corroboration with magneto-caloric study. The abnormal exponent values have been viewed in context of ferromagnetic-Griffiths phase transition. The GP has been further analyzed using Bray model, which yields a reliable value of $beta$ = 0.19(2), belonging to the two-dimensional (2D) XYh$_4$ universality class with strong anisotropy present in Sr$_2$IrO$_4$. The present study proposes Bray model as a possible tool to investigate the critical behavior for Griffiths ferromagnets in place of conventional Arrott plot analysis. The possible origins of GP and its correlation with insulating nature of Sr$_2$IrO$_4$ have been discussed.
70 - R. H. Liu , G. Wu , T. Wu 2008
The magnetic fluctuations associated with a quantum critical point (QCP) are widely believed to cause the non-Fermi liquid behaviors and unconventional superconductivities, for example, in heavy fermion systems and high temperature cuprate supercondu ctors. Recently, superconductivity has been discovered in iron-based layered compound $LaO_{1-x}F_xFeAs$ with $T_c$=26 Kcite{yoichi}, and it competes with spin-density-wave (SDW) ordercite{dong}. Neutron diffraction shows a long-rang SDW-type antiferromagnetic (AF) order at $sim 134$ K in LaOFeAscite{cruz,mcguire}. Therefore, a possible QCP and its role in this system are of great interests. Here we report the detailed phase diagram and anomalous transport properties of the new high-Tc superconductors $SmO_{1-x}F_xFeAs$ discovered by uscite{chenxh}. It is found that superconductivity emerges at $xsim$0.07, and optimal doping takes place in the $xsim$0.20 sample with highest $T_c sim $54 K. While $T_c$ increases monotonically with doping, the SDW order is rapidly suppressed, suggesting a QCP around $x sim$0.14. As manifestations, a linear temperature dependence of the resistivity shows up at high temperatures in the $x<0.14$ regime, but at low temperatures just above $T_c$ in the $x>0.14$ regime; a drop in carrier density evidenced by a pronounced rise in Hall coefficient are observed, which mimic the high-$T_c$ cuprates. The simultaneous occurrence of order, carrier density change and criticality makes a compelling case for a quantum critical point in this system.
The phase diagram of the random field Ising model on the Bethe lattice with a symmetric dichotomous random field is closely investigated with respect to the transition between the ferromagnetic and paramagnetic regime. Refining arguments of Bleher, R uiz and Zagrebnov [J. Stat. Phys. 93, 33 (1998)] an exact upper bound for the existence of a unique paramagnetic phase is found which considerably improves the earlier results. Several numerical estimates of transition lines between a ferromagnetic and a paramagnetic regime are presented. The obtained results do not coincide with a lower bound for the onset of ferromagnetism proposed by Bruinsma [Phys. Rev. B 30, 289 (1984)]. If the latter one proves correct this would hint to a region of coexistence of stable ferromagnetic phases and a stable paramagnetic phase.
The adsorption of a single multi-block $AB$-copolymer on a solid planar substrate is investigated by means of computer simulations and scaling analysis. It is shown that the problem can be mapped onto an effective homopolymer adsorption problem. In p articular we discuss how the critical adsorption energy and the fraction of adsorbed monomers depend on the block length $M$ of sticking monomers $A$, and on the total length $N$ of the polymer chains. Also the adsorption of the random copolymers is considered and found to be well described within the framework of the annealed approximation. For a better test of our theoretical prediction, two different Monte Carlo (MC) simulation methods were employed: a) off-lattice dynamic bead-spring model, based on the standard Metropolis algorithm (MA), and b) coarse-grained lattice model using the Pruned-enriched Rosenbluth method (PERM) which enables tests for very long chains. The findings of both methods are fully consistent and in good agreement with theoretical predictions.
We report the successful synthesis of FeSe$_{1-x}$S$_{x}$ single crystals with $x$ ranging from 0 to 1 via a hydrothermal method. A complete phase diagram of FeSe$_{1-x}$S$_{x}$ has been obtained based on resistivity and magnetization measurements. T he nematicity is suppressed with increasing $x$, and a small superconducting dome appears within the nematic phase. Outside the nematic phase, the superconductivity is continuously suppressed and reaches a minimum $T_c$ at $x$ = 0.45; beyond this point, $T_c$ slowly increases until $x$ = 1. Intriguingly, an anomalous resistivity upturn with a characteristic temperature $T^*$ in the intermediate region of $0.31 leq x leq 0.71$ is observed. $T^{*}$ shows a dome-like behavior with a maximum value at $x$ = 0.45, which is opposite the evolution of $T_c$, indicating competition between $T^*$ and superconductivity. The origin of $T^*$ is discussed in detail. Furthermore, the normal state resistivity evolves from non-Fermi-liquid to Fermi-liquid behavior with S doping at low temperatures, accompanied by a reduction in electronic correlations. Our study addresses the lack of single crystals in the high-S doping region and provides a complete phase diagram, which will promote the study of relations among nematicity, superconductivity, and magnetism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا