ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-Dependent Charge-Order and Spin-Order Recovery in Striped Systems

53   0   0.0 ( 0 )
 نشر من قبل Yvonne Kung
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using time-dependent Ginzburg-Landau theory, we study the role of amplitude and phase fluctuations in the recovery of charge and spin stripe phases in response to a pump pulse that melts the orders. For parameters relevant to the case where charge order precedes spin order thermodynamically, amplitude recovery governs the initial time scales, while phase recovery controls behavior at longer times. In addition to these intrinsic effects, there is a longer spin re-orientation time scale related to the scattering geometry that dominates the recovery of the spin phase. Coupling between the charge and spin orders locks the amplitude and similarly the phase recovery, reducing the number of distinct time scales. Our results well reproduce the major experimental features of pump-probe x-ray diffraction measurements on the striped nickelate La$_{1.75}$Sr$_{0.25}$NiO$_4$. They highlight the main idea of this work, which is the use of time-dependent Ginzburg-Landau theory to study systems with multiple coexisting order parameters.

قيم البحث

اقرأ أيضاً

We report a ground state with strongly coupled magnetic and charge density wave orders mediated via orbital ordering in the layered compound tbt. In addition to the commensurate antiferromagnetic (AFM) and charge density wave (CDW) orders, new magnet ic peaks are observed whose propagation vector equals the sum of the AFM and CDW propagation vectors, revealing an intricate and highly entwined relationship. This is especially interesting given that the magnetic and charge orders lie in different layers of the crystal structure where the highly localized magnetic moments of the Tb$^{3+}$ ions are netted in the Tb-Te stacks, while the charge order is formed by the conduction electrons of the adjacent Te-Te layers. Our results, based on neutron diffraction and resonant x-ray scattering reveal that the charge and magnetic subsystems mutually influence each other via the orbital ordering of Tb$^{3+}$ ions.
We demonstrate that Kondo-Heisenberg systems, consisting of itinerant electrons and localized magnetic moments (Kondo impurities), can be used as a principally new platform to realize scalar chiral spin order. The underlying physics is governed by a competition of the Ruderman-Kittel-Kosuya-Yosida (RKKY) indirect exchange interaction between the local moments with the direct Heisenberg one. When the direct exchange is weak and RKKY dominates the isotropic system is in the disordered phase. A moderately large direct exchange leads to an Ising-type phase transition to the phase with chiral spin order. Our finding paves the way towards pioneering experimental realizations of the chiral spin liquid in low dimensional systems with spontaneously broken time reversal symmetry.
Nematic order has manifested itself in a variety of materials in the cuprate family. We propose an effective field theory of a layered system with incommensurate, intertwined spin- and charge-density wave (SDW and CDW) orders, each of which consists of two components related by $C_4$ rotations. Using a variational method (which is exact in a large $N$ limit), we study the development of nematicity from partially melting those density waves by either increasing temperature or adding quenched disorder. As temperature decreases we first find a transition to a nematic phase, but depending on the range of parameters (e.g. doping concentration) the strongest fluctuations associated with this phase reflect either proximate SDW or CDW order. We also discuss the changes in parameters that can account for the differences in the SDW-CDW interplay between the (214) family and the other hole-doped cuprates.
92 - M. Hepting , M. Minola , A. Frano 2014
We have used polarized Raman scattering to probe lattice vibrations and charge ordering in 12 nm thick, epitaxially strained PrNiO$_3$ films, and in superlattices of PrNiO$_3$ with the band-insulator PrAlO$_3$. A carefully adjusted confocal geometry was used to eliminate the substrate contribution to the Raman spectra. In films and superlattices under tensile strain, which undergo a metal-insulator transition upon cooling, the Raman spectra reveal phonon modes characteristic of charge ordering. These anomalous phonons do not appear in compressively strained films, which remain metallic at all temperatures. For superlattices under compressive strain, the Raman spectra show no evidence of anomalous phonons indicative of charge ordering, while complementary resonant x-ray scattering experiments reveal antiferromagnetic order associated with a modest increase in resistivity upon cooling. This confirms theoretical predictions of a spin density wave phase driven by spatial confinement of the conduction electrons.
Charge order affects most of the electronic properties but is believed not to alter the spin arrangement since the magnetic susceptibility remains unchanged. We present electron-spin-resonance experiments on quasi-one-dimensional (TMTTF)2X salts (X= PF6, AsF6 and SbF6), which reveal that the magnetic properties are modified below TCO when electronic ferroelectricity sets in. The coupling of anions and organic molecules rotates the g-tensor out of the molecular plane creating magnetically non-equivalent sites on neighboring chains at domain walls. Due to anisotropic Zeeman interaction a novel magnetic interaction mechanism in the charge-ordered state is observed as a doubling of the rotational periodicity of Delta H.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا