ﻻ يوجد ملخص باللغة العربية
Charge order affects most of the electronic properties but is believed not to alter the spin arrangement since the magnetic susceptibility remains unchanged. We present electron-spin-resonance experiments on quasi-one-dimensional (TMTTF)2X salts (X= PF6, AsF6 and SbF6), which reveal that the magnetic properties are modified below TCO when electronic ferroelectricity sets in. The coupling of anions and organic molecules rotates the g-tensor out of the molecular plane creating magnetically non-equivalent sites on neighboring chains at domain walls. Due to anisotropic Zeeman interaction a novel magnetic interaction mechanism in the charge-ordered state is observed as a doubling of the rotational periodicity of Delta H.
A symmetry-protected topologically ordered phase is a short-range entangled state, for which some imposed symmetry prohibits the adiabatic deformation into a trivial state which lacks entanglement. In this paper we argue that magnetization plateau st
Symmetry-protected trivial (SPt) phases of matter are the product-state analogue of symmetry-protected topological (SPT) phases. This means, SPt phases can be adiabatically connected to a product state by some path that preserves the protecting symme
By means of a numerical analysis using a non-Abelian symmetry realization of the density matrix renormalization group, we study the behavior of vector chirality correlations in isotropic frustrated chains of spin S=1 and S=1/2, subject to a strong ex
We construct an example of a 1$d$ quasiperiodically driven spin chain whose edge states can coherently store quantum information, protected by a combination of localization, dynamics, and topology. Unlike analogous behavior in static and periodically
The repulsive Hubbard Hamiltonian is one of the foundational models describing strongly correlated electrons and is believed to capture essential aspects of high temperature superconductivity. Ultracold fermions in optical lattices allow for the simu