ترغب بنشر مسار تعليمي؟ اضغط هنا

Probe of the Solar Magnetic Field Using the Cosmic-Ray Shadow of the Sun

294   0   0.0 ( 0 )
 نشر من قبل Kazumasa Kawata
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a clear solar-cycle variation of the Suns shadow in the 10 TeV cosmic-ray flux observed by the Tibet air shower array during a full solar cycle from 1996 to 2009. In order to clarify the physical implications of the observed solar cycle variation, we develop numerical simulations of the Suns shadow, using the Potential Field Source Surface (PFSS) model and the Current Sheet Source Surface (CSSS) model for the coronal magnetic field. We find that the intensity deficit in the simulated Suns shadow is very sensitive to the coronal magnetic field structure, and the observed variation of the Suns shadow is better reproduced by the CSSS model. This is the first successful attempt to evaluate the coronal magnetic field models by using the Suns shadow observed in the TeV cosmic-ray flux.



قيم البحث

اقرأ أيضاً

134 - M. Amenomori , X. J. Bi , D. Chen 2018
We analyze the Suns shadow observed with the Tibet-III air shower array and find that the shadows center deviates northward (southward) from the optical solar disc center in the Away (Toward) IMF sector. By comparing with numerical simulations based on the solar magnetic field model, we find that the average IMF strength in the Away (Toward) sector is $1.54 pm 0.21_{rm stat} pm 0.20_{rm syst}$ ($1.62 pm 0.15_{rm stat} pm 0.22_{rm syst}$) times larger than the model prediction. These demonstrate that the observed Suns shadow is a useful tool for the quantitative evaluation of the average solar magnetic field.
The shadowing effect of the Moon and Sun in TeV cosmic rays has been measured with high statistical significance by several experiments. Unlike particles from directions close to the Moon, however, charged particles passing by the neighborhood of the Sun are affected not only by the geomagnetic but also by the solar near- and interplanetary-magnetic field. Since the latter undergoes a well-known 11-year cycle -- during which it can become highly disordered -- the cosmic-ray shadow cast by the Sun as observed on Earth is expected to change over time. We present an update of the analysis of the cosmic-ray Moon and Sun shadows using data taken with the IceCube Neutrino Observatory. With a median energy after quality cuts of approximately $50-60,$TeV, depending on the cosmic-ray flux model used, primary cosmic rays inducing events which pass IceCubes Sun shadow filter have a comparatively high energy. While the results for the Moon shadow confirm the stability of the IceCube observatory, the results for the Sun shadow exhibit a clear variation correlating with solar activity and theoretical models of the solar magnetic field.
Observations of the time-dependent cosmic-ray Sun shadow have been proven as a valuable diagnostic for the assessment of solar magnetic field models. In this paper, seven years of IceCube data are compared to solar activity and solar magnetic field m odels. A quantitative comparison of solar magnetic field models with IceCube data on the event rate level is performed for the first time. Additionally, a first energy-dependent analysis is presented and compared to recent predictions. We use seven years of IceCube data for the Moon and the Sun and compare them to simulations on data rate level. The simulations are performed for the geometrical shadow hypothesis for the Moon and the Sun and for a cosmic-ray propagation model governed by the solar magnetic field for the case of the Sun. We find that a linearly decreasing relationship between Sun shadow strength and solar activity is preferred over a constant relationship at the 6.4sigma level. We test two commonly used models of the coronal magnetic field, both combined with a Parker spiral, by modeling cosmic-ray propagation in the solar magnetic field. Both models predict a weakening of the shadow in times of high solar activity as it is also visible in the data. We find tensions with the data on the order of $3sigma$ for both models, assuming only statistical uncertainties. The magnetic field model CSSS fits the data slightly better than the PFSS model. This is generally consistent with what is found previously by the Tibet AS-gamma Experiment, a deviation of the data from the two models is, however, not significant at this point. Regarding the energy dependence of the Sun shadow, we find indications that the shadowing effect increases with energy during times of high solar activity, in agreement with theoretical predictions.
ANTARES is the largest undersea neutrino telescope and it has been taking data in its final configuration for more than ten years. On their journey to the Earth, cosmic rays can be absorbed by celestial objects, like the Sun, leading to a deficit in the atmospheric muon flux measured by the ANTARES detector, the so-called Sun shadow effect. This phenomenon can be used to evaluate fundamental telescope characteristics: the detector angular resolution and pointing accuracy. This work describes the study of the Sun shadow effect using the ANTARES data collected between 2008 and 2017. The statistical significance of the Sun shadow observation is $3.7sigma$ and the estimated angular resolution value of the ANTARES telescope for downward-going muons is $0.59^{circ} pm 0.10^{circ}$, which is consistent with the expectations obtained from the Monte Carlo simulations and also with the estimation from the Moon shadow analysis of 2007-2016 years. No evidence of systematic pointing shift is found and the resulting pointing accuracy is consistent with the expectations.
The ANTARES detector is an undersea neutrino telescope in the Mediterranean Sea. The search for point-like neutrino sources is one of the main goals of the ANTARES telescope, requiring a reliable method to evaluate the detector angular resolution and pointing accuracy. This work describes the study of the Sun shadow effect with the ANTARES detector. The shadow is the deficit in the atmospheric muon flux in the direction of the Sun caused by the absorption of the primary cosmic rays. This analysis is based on the data collected between 2008 and 2017 by the ANTARES telescope. The observed statistical significance of the Sun shadow detection is $3.7sigma$, with an estimated angular resolution of $0.59^circpm0.10^circ$ for downward-going muons. The pointing accuracy is found to be consistent with the expectations and no evidence of systematic pointing shifts is observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا