ترغب بنشر مسار تعليمي؟ اضغط هنا

Top-quark pair production at high invariant mass: an NNLO soft plus virtual approximation

81   0   0.0 ( 0 )
 نشر من قبل Andrea Ferroglia
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We obtain a soft plus virtual approximation to the NNLO QCD contributions to the top-pair invariant mass distribution at hadron colliders. It is valid up to corrections of order m_t^2/M^2, with M the pair invariant mass. This is currently the most complete QCD calculation for a differential cross section in top-quark pair production, and is useful for describing the high invariant mass region characteristic of boosted top quarks. We use our results to construct an improved NNLO approximation for the pair invariant mass distribution and compare it with previous, less complete approximations based on logarithmic terms from NNLL soft-gluon resummation alone. We find that the new NNLO approximation produces moderate enhancements of the differential cross section compared to previous ones, the effect being slightly more important at low values of invariant mass than at high ones. On the other hand, at high values of invariant mass the new NNLO corrections are dominated by even higher-order effects included in NNLL soft-gluon resummation, reaffirming the need for resummation in describing the highly boosted regime.

قيم البحث

اقرأ أيضاً

At high values of the pair invariant mass the differential cross section for top-quark pair production at hadron colliders factorizes into soft, hard, and fragmentation functions. In this paper we calculate the next-to-next-to-leading-order (NNLO) co rrections to the soft function appearing in this factorization formula, thus providing the final piece needed to evaluate at NNLO the differential cross section in the virtual plus soft approximation in the large invariant-mass limit. Technically, this amounts to evaluating the vacuum expectation value of a soft Wilson loop operator built out of light-like Wilson lines for each of the four partons participating in the hard scattering process, with a certain constraint on the total energy of the soft radiation. Our result turns out to be surprisingly simple, because in the sum of all graphs the three and four parton contributions multiply color structures whose coefficients are governed by the non-abelian exponentiation theorem.
We describe predictions for top-quark pair differential distributions at hadron colliders, which combine state-of-the-art NNLO QCD calculations and NLO electroweak corrections together with double resummation at NNLL$$ accuracy of threshold logarithm s and small-mass logarithms. This is the first time that such a combination has appeared in the literature. Numerical results are presented for the invariant-mass distribution, the transverse-momentum distribution as well as rapidity distributions.
We study methods of extracting new physics signals in final states with a top-quark pair plus large missing energy at the LHC. We consider two typical examples of such new physics: pair production of a fermionic top partner (a $T$ in Little Higgs mod els for example) and of a scalar top partner (a $tilde{t}$ in SUSY). With a commonly-adopted discrete symmetry under which non Standard Model particles are odd, the top partner is assumed to decay predominantly to a top quark plus a massive neutral stable particle $A^0$. We focus on the case in which one of the top quarks decays leptonically and the other decays hadronically, $pp to {tt} A^0A^0 X to bj_1j_2 bar bell^- bar u A^0A^0 X + c.c.$, where the $A^0$s escape detection. We identify a key parameter for the signal observation: the mass splitting between the top partner and the missing particle. We reconstruct a transverse mass for the lepton-missing transverse energy system to separate the real $W$ background from the signal and propose a definition for the reconstructed top quark mass that allows it to take unphysical values as an indication of new physics. We perform a scan over the two masses to map out the discovery reach at the LHC in this channel. We also comment on the possibility of distinguishing between scalar and fermionic top partners using collider signatures.
We review a Soft Collinear Effective Theory approach to the study of factorization and resummation of QCD effects in top-quark pair production. In particular, we consider differential cross sections such as the top-quark pair invariant mass distribut ion and the top-quark transverse momentum and rapidity distributions. Furthermore, we focus our attention on the large invariant mass and large transverse momentum kinematic regions, characteristic of boosted top quarks. We discuss the factorization of the differential cross section in the double soft gluon emission and small top-quark mass limit, both in Pair Invariant Mass (PIM) and One Particle Inclusive (1PI) kinematics. The factorization formulas can be employed in order to implement the simultaneous resummation of soft emission and small mass effects up to next-to-next-to-leading logarithmic accuracy. The results are also used to construct improved next-to-next-to-leading order approximations for the differential cross sections.
In ongoing and upcoming hadron collider experiments, top quark physics will play an important role in testing the Standard Model and its possible extensions. In this work we present analytic results for the differential cross sections of top quark pa ir production in hadronic collisions at next-to-leading order in the QCD coupling, keeping the full dependence on the spins of the top quarks. These results are combined with the corresponding next-to-leading order results for the decay of polarized top quarks into dilepton, lepton plus jets, and all jets final states. As an application we predict double differential angular distributions which are due to the QCD-induced top quark spin correlations in the intermediate state. In addition to the analytic results, we give numerical results in terms of fit functions that can easily be used in an experimental analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا