ترغب بنشر مسار تعليمي؟ اضغط هنا

Collective baryon decay and gravitational collapse

42   0   0.0 ( 0 )
 نشر من قبل George Chapline F
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

While it is widely believed that the gravitational collapse of a sufficiently large mass will lead to a density singularity and an event horizon, we propose that this never happens when quantum effects are taken into account. In particular, we propose that when the conditions become ripe for a trapped surface to form, a quantum critical surface sweeps over the collapsing body, transforming the nucleons in the collapsing matter into a lepton/photon gas together with a positive vacuum energy. This will happen regardless of the matter density at the time a trapped surface starts to form, and as a result we predict that at least in all cases of gravitational collapse involving ordinary matter, a large fraction of the rest mass of the collapsing matter will be converted into a burst of neutrinos, and {gamma}-rays. We predict that the peak luminosity of these bursts is only weakly dependent on the mass of the collapsing object, and is on the order of ({epsilon}_q/m_Pc^2)^1/4c^5/G, where {epsilon}_q is the mean energy of a nucleon parton and m_P is the Planck mass. The duration of the bursts will depend the mass of the collapsing objects; in the case of stellar core collapse we predict that the duration of both the neutrino and {gamma}-ray bursts will be on the order of 10 seconds.


قيم البحث

اقرأ أيضاً

117 - C. D. Ott 2012
We present results from a new set of 3D general-relativistic hydrodynamic simulations of rotating iron core collapse. We assume octant symmetry and focus on axisymmetric collapse, bounce, the early postbounce evolution, and the associated gravitation al wave (GW) and neutrino signals. We employ a finite-temperature nuclear equation of state, parameterized electron capture in the collapse phase, and a multi-species neutrino leakage scheme after bounce. The latter captures the important effects of deleptonization, neutrino cooling and heating and enables approximate predictions for the neutrino luminosities in the early evolution after core bounce. We consider 12-solar-mass and 40-solar-mass presupernova models and systematically study the effects of (i) rotation, (ii) progenitor structure, and (iii) postbounce neutrino leakage on dynamics, GW, and, neutrino signals. We demonstrate, that the GW signal of rapidly rotating core collapse is practically independent of progenitor mass and precollapse structure. Moreover, we show that the effects of neutrino leakage on the GW signal are strong only in nonrotating or slowly rotating models in which GW emission is not dominated by inner core dynamics. In rapidly rotating cores, core bounce of the centrifugally-deformed inner core excites the fundamental quadrupole pulsation mode of the nascent protoneutron star. The ensuing global oscillations (f~700-800 Hz) lead to pronounced oscillations in the GW signal and correlated strong variations in the rising luminosities of antineutrino and heavy-lepton neutrinos. We find these features in cores that collapse to protoneutron stars with spin periods <~ 2.5 ms and rotational energies sufficient to drive hyper-energetic core-collapse supernova explosions. Hence, joint GW + neutrino observations of a core collapse event could deliver strong evidence for or against rapid core rotation. [abridged]
In this work we report briefly on the gravitational wave (GW) signal computed in the context of a self-consistent, 3D simulation of a core-collapse supernova (CCSN) explosion of a 15M$_odot$ progenitor star. We present a short overview of the GW sign al, including signal amplitude, frequency distribution, and the energy emitted in the form of GWs for each phase of explosion, along with neutrino luminosities, and discuss correlations between them.
The next galactic core-collapse supernova (CCSN) has already exploded, and its electromagnetic (EM) waves, neutrinos, and gravitational waves (GWs) may arrive at any moment. We present an extensive study on the potential sensitivity of prospective de tection scenarios for GWs from CCSNe within 5Mpc, using realistic noise at the predicted sensitivity of the Advanced LIGO and Advanced Virgo detectors for 2015, 2017, and 2019. We quantify the detectability of GWs from CCSNe within the Milky Way and Large Magellanic Cloud, for which there will be an observed neutrino burst. We also consider extreme GW emission scenarios for more distant CCSNe with an associated EM signature. We find that a three detector network at design sensitivity will be able to detect neutrino-driven CCSN explosions out to ~5.5 kpc, while rapidly rotating core collapse will be detectable out to the Large Magellanic Cloud at 50kpc. Of the phenomenological models for extreme GW emission scenarios considered in this study, such as long-lived bar-mode instabilities and disk fragmentation instabilities, all models considered will be detectable out to M31 at 0.77 Mpc, while the most extreme models will be detectable out to M82 at 3.52 Mpc and beyond.
Using predictions from three-dimensional (3D) hydrodynamics simulations of core-collapse supernovae (CCSNe), we present a coherent network analysis to detection, reconstruction, and the source localization of the gravitational-wave (GW) signals. We u se the {tt RIDGE} pipeline for the analysis, in which the network of LIGO Hanford, LIGO Livingston, VIRGO, and KAGRA is considered. By combining with a GW spectrogram analysis, we show that several important hydrodynamics features in the original waveforms persist in the waveforms of the reconstructed signals. The characteristic excess in the spectrograms originates not only from rotating core-collapse, bounce and the subsequent ring down of the proto-neutron star (PNS) as previously identified, but also from the formation of magnetohydrodynamics jets and non-axisymmetric instabilities in the vicinity of the PNS. Regarding the GW signals emitted near at the rotating core bounce, the horizon distance extends up to $sim$ 18 kpc for the most rapidly rotating 3D model in this work. Following the rotating core bounce, the dominant source of the GW emission shifts to the non-axisymmetric instabilities. The horizon distances extend maximally up to $sim$ 40 kpc seen from the spin axis. With an increasing number of 3D models trending towards explosion recently, our results suggest that in addition to the best studied GW signals due to rotating core-collapse and bounce, the time is ripe to consider how we can do science from GWs of CCSNe much more seriously than before. Particularly the quasi-periodic signals due to the non-axisymmetric instabilities and the detectability should deserve further investigation to elucidate the inner-working of the rapidly rotating CCSNe.
We report on the gravitational wave signal computed in the context of a three-dimensional simulation of a core collapse supernova explosion of a 15 Solar mass star. The simulation was performed with our neutrino hydrodynamics code Chimera. We detail the gravitational wave strains as a function of time, for both polarizations, and discuss their physical origins. We also present the corresponding spectral signatures. Gravitational wave emission in our model has two key features: low-frequency emission (< 200 Hz) emanates from the gain layer as a result of neutrino-driven convection and the SASI and high-frequency emission (> 600 Hz) emanates from the proto-neutron star due to Ledoux convection within it. The high-frequency emission dominates the gravitational wave emission in our model and emanates largely from the convective layer itself, not from the convectively stable layer above it, due to convective overshoot. Moreover, the low-frequency emission emanates from the gain layer itself, not from the proto-neutron star, due to accretion onto it. We provide evidence of the SASI in our model and demonstrate that the peak of our low-frequency gravitational wave emission spectrum corresponds to it. Given its origin in the gain layer, we classify the SASI emission in our model as p-mode emission and assign a purely acoustic origin, not a vortical-acoustic origin, to it. Our dominant proto-neutron star gravitational wave emission is not well characterized by emission from surface g-modes, complicating the relationship between peak frequencies observed and the mass and radius of the proto-neutron star expressed by analytic estimates under the assumption of surface g-mode emission. We present our frequency normalized characteristic strain along with the sensitivity curves of current- and next-generation gravitational wave detectors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا