ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlated Gravitational Wave and Neutrino Signals from General-Relativistic Rapidly Rotating Iron Core Collapse

158   0   0.0 ( 0 )
 نشر من قبل Christian D. Ott
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. D. Ott




اسأل ChatGPT حول البحث

We present results from a new set of 3D general-relativistic hydrodynamic simulations of rotating iron core collapse. We assume octant symmetry and focus on axisymmetric collapse, bounce, the early postbounce evolution, and the associated gravitational wave (GW) and neutrino signals. We employ a finite-temperature nuclear equation of state, parameterized electron capture in the collapse phase, and a multi-species neutrino leakage scheme after bounce. The latter captures the important effects of deleptonization, neutrino cooling and heating and enables approximate predictions for the neutrino luminosities in the early evolution after core bounce. We consider 12-solar-mass and 40-solar-mass presupernova models and systematically study the effects of (i) rotation, (ii) progenitor structure, and (iii) postbounce neutrino leakage on dynamics, GW, and, neutrino signals. We demonstrate, that the GW signal of rapidly rotating core collapse is practically independent of progenitor mass and precollapse structure. Moreover, we show that the effects of neutrino leakage on the GW signal are strong only in nonrotating or slowly rotating models in which GW emission is not dominated by inner core dynamics. In rapidly rotating cores, core bounce of the centrifugally-deformed inner core excites the fundamental quadrupole pulsation mode of the nascent protoneutron star. The ensuing global oscillations (f~700-800 Hz) lead to pronounced oscillations in the GW signal and correlated strong variations in the rising luminosities of antineutrino and heavy-lepton neutrinos. We find these features in cores that collapse to protoneutron stars with spin periods <~ 2.5 ms and rotational energies sufficient to drive hyper-energetic core-collapse supernova explosions. Hence, joint GW + neutrino observations of a core collapse event could deliver strong evidence for or against rapid core rotation. [abridged]



قيم البحث

اقرأ أيضاً

We present results from full general relativistic three-dimensional hydrodynamics simulations of stellar core collapse of a 70 M$_odot$ star with spectral neutrino transport. To investigate the impact of rotation on non-axisymmetric instabilities, we compute three models by parametrically changing the initial strength of rotation. The most rapidly rotating model exhibits a transient development of the low-$T/|W|$ instability with one-armed spiral flow at the early postbounce phase. Subsequently, the two-armed spiral flow appears, which persists during the simulation time. The moderately rotating model also shows the growth of the low-$T/|W|$ instability, but only with the two-armed spiral flow. In the nonrotating model, a vigorous activity of the standing accretion-shock instability (SASI) is only observed. The SASI is first dominated by the sloshing mode, which is followed by the spiral SASI until the black hole formation. We present a spectrogram analysis of the gravitational waves (GWs) and neutrinos, focusing on the time correlation. Our results show that characteristic time modulations in the GW and neutrino signals can be linked to the growth of the non-axisymmetric instabilities. We find that the degree of the protoneutron star (PNS) deformation, depending upon which modes of the non-axisymmetric instabilities develop, predominantly affects the characteristic frequencies of the correlated GW and neutrino signals. We point out that these signals would be simultaneously detectable by the current-generation detectors up to $sim10$ kpc. Our findings suggest that the joint observation of GWs and neutrinos is indispensable for extracting information on the PNS evolution preceding the black hole formation.
In this work we report briefly on the gravitational wave (GW) signal computed in the context of a self-consistent, 3D simulation of a core-collapse supernova (CCSN) explosion of a 15M$_odot$ progenitor star. We present a short overview of the GW sign al, including signal amplitude, frequency distribution, and the energy emitted in the form of GWs for each phase of explosion, along with neutrino luminosities, and discuss correlations between them.
We present gravitational wave (GW) signal predictions from four 3D multi-group neutrino hydrodynamics simulations of core-collapse supernovae of progenitors with 11.2 Msun, 20 Msun, and 27 Msun. GW emission in the pre-explosion phase strongly depends on whether the post-shock flow is dominated by the standing accretion shock instability (SASI) or convection and differs considerably from 2D models. SASI activity produces a strong signal component below 250 Hz through asymmetric mass motions in the gain layer and a non-resonant coupling to the proto-neutron star (PNS). Both convection- and SASI-dominated models show GW emission above 250 Hz, but with considerably lower amplitudes than in 2D. This is due to a different excitation mechanism for high-frequency l=2 motions in the PNS surface, which are predominantly excited by PNS convection in 3D. Resonant excitation of high-frequency surface g-modes in 3D by mass motions in the gain layer is suppressed compared to 2D because of smaller downflow velocities and a lack of high-frequency variability in the downflows. In the exploding 20 Msun model, shock revival results in enhanced low-frequency emission due to a change of the preferred scale of the convective eddies in the PNS convection zone. Estimates of the expected excess power in two frequency bands suggests that second-generation detectors will only be able to detect very nearby events, but that third-generation detectors could distinguish SASI- and convection-dominated models at distances of ~10 kpc.
310 - C. D. Ott 2012
We study the three-dimensional (3D) hydrodynamics of the post-core-bounce phase of the collapse of a 27-solar-mass star and pay special attention to the development of the standing accretion shock instability (SASI) and neutrino-driven convection. To this end, we perform 3D general-relativistic simulations with a 3-species neutrino leakage scheme. The leakage scheme captures the essential aspects of neutrino cooling, heating, and lepton number exchange as predicted by radiation-hydrodynamics simulations. The 27-solar-mass progenitor was studied in 2D by B. Mueller et al. (ApJ 761:72, 2012), who observed strong growth of the SASI while neutrino-driven convection was suppressed. In our 3D simulations, neutrino-driven convection grows from numerical perturbations imposed by our Cartesian grid. It becomes the dominant instability and leads to large-scale non-oscillatory deformations of the shock front. These will result in strongly aspherical explosions without the need for large-scale SASI shock oscillations. Low-l-mode SASI oscillations are present in our models, but saturate at small amplitudes that decrease with increasing neutrino heating and vigor of convection. Our results, in agreement with simpler 3D Newtonian simulations, suggest that once neutrino-driven convection is started, it is likely to become the dominant instability in 3D. Whether it is the primary instability after bounce will ultimately depend on the physical seed perturbations present in the cores of massive stars. The gravitational wave signal, which we extract and analyze for the first time from 3D general-relativistic models, will serve as an observational probe of the postbounce dynamics and, in combination with neutrinos, may allow us to determine the primary hydrodynamic instability.
Core collapse supernovae are a promising source of detectable gravitational waves. Most of the existing (multidimensional) numerical simulations of core collapse in general relativity have been done using approximations of the Einstein field equation s. As recently shown by Dimmelmeier et al (2002a,b), one of the most interesting such approximation is the so-called conformal flatness condition (CFC) of Isenberg, Wilson and Mathews. Building on this previous work we present here new results from numerical simulations of relativistic rotational core collapse in axisymmetry, aiming at improving the dynamics and the gravitational waveforms. The computer code used for these simulations evolves the coupled system of metric and fluid equations using the 3+1 formalism, specialized to a new framework for the gravitational field equations which we call CFC+. In this approach we add new degrees of freedom to the original CFC equations, which extend them by terms of second post-Newtonian order. The corrections for CFC+ are computed solving a system of elliptic linear equations. The new formalism is assessed with time evolutions of both rotating neutron stars in equilibrium and gravitational core collapse of rotating polytropes. Gravitational wave signals for a comprehensive sample of collapse models are extracted using either the quadrupole formula or directly from the metric. We discuss our results on the dynamics and the gravitational wave emission through a detailed comparison between CFC and CFC+ simulations. The main conclusion is that, for the neutron star spacetimes analyzed in the present work, no significant differences are found among CFC, CFC+, and full general relativity, which highlights the suitability of the former.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا