ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical Properties, Star Formation, and Active Galactic Nucleus Activity in Balmer Break Galaxies at 0 < z < 1

88   0   0.0 ( 0 )
 نشر من قبل Jorge D\\'iaz Tello
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Diaz Tello




اسأل ChatGPT حول البحث

We present a spectroscopic study with the derivation of the physical properties of 37 Balmer break galaxies, which have the necessary lines to locate them in star-forming-AGN diagnostic diagrams. These galaxies span a redshift range from 0.045 to 0.93 and are somewhat less massive than similar samples of previous works. The studied sample has multiwavelength photometric data coverage from the ultraviolet to MIR Spitzer bands. We investigate the connection between star formation and AGN activity via optical, mass-excitation (MEx) and MIR diagnostic diagrams. Through optical diagrams, 31 (84%) star-forming galaxies, 2 (5%) composite galaxies and 3 (8%) AGNs were classified, whereas from the MEx diagram only one galaxy was classified as AGN. A total of 19 galaxies have photometry available in all the IRAC/Spitzer bands. Of these, 3 AGN candidates were not classified as AGN in the optical diagrams, suggesting they are dusty/obscured AGNs, or that nuclear star formation has diluted their contributions. Furthermore, the relationship between SFR surface density (Sigma_{SFR}) and stellar mass surface density per time unit (Sigma_{M_{ast}/tau}) as a function of redshift was investigated using the [OII] lambda3727, 3729, Halpha lambda6563 luminosities, which revealed that both quantities are larger for higher redshift galaxies. We also studied the SFR and SSFR versus stellar mass and color relations, with the more massive galaxies having higher SFR values but lower SSFR values than less massive galaxies. These results are consistent with previous ones showing that, at a given mass, high-redshift galaxies have on average larger SFR and SSFR values than low-redshift galaxies. Finally, bluer galaxies have larger SSFR values than redder galaxies and for a given color the SSFR is larger for higher redshift galaxies.

قيم البحث

اقرأ أيضاً

106 - J. Diaz Tello 2016
Aims. We present a spectroscopic study of the properties of 64 Balmer break galaxies that show signs of star formation. The studied sample of star-forming galaxies spans a redshift range from 0.094 to 1.475 with stellar masses in the range 10$^{8}-$1 0$^{12}$ $M_{odot}$. The sample also includes eight broad emission line galaxies with redshifts between 1.5 $<z<$ 3.0. Methods. We derived star formation rates (SFRs) from emission line luminosities and investigated the dependence of the SFR and specific SFR (SSFR) on the stellar mass and color. Furthermore, we investigated the evolution of these relations with the redshift. Results. We found that the SFR correlates with the stellar mass, our data is consistent with previous results from other authors in that there is a break in the correlation, which reveals the presence of massive galaxies with lower SFR values (i.e., decreasing star formation). We also note an anticorrelation for the SSFR with the stellar mass. Again in this case, our data is also consistent with a break in the correlation, revealing the presence of massive star-forming galaxies with lower SSFR values, thereby increasing the anticorrelation. These results might suggest a characteristic mass ($M_{0}$) at which the red sequence could mostly be assembled. In addition, at a given stellar mass, high-redshift galaxies have on average higher SFR and SSFR values than local galaxies. Finally, we explored whether a similar trend could be observed with redshift in the SSFR$-(u-B)$ color diagram, and we hypothesize that a possible $(u-B)_{0}$ break color may define a characteristic color for the formation of the red sequence.
We review recent evidence for a clear association between accretion onto supermassive black holes and star formation up to z~1 in the zCOSMOS survey. Star formation rates (SFRs) are determined from the [OII] emission-line strength and a correction fo r the AGN contribution. We find that SFRs of X-ray selected AGN span a distribution of 1-100 solar masses per year and evolve in a manner that is indistinguishable from that of massive, star-forming galaxies. The close relationship between AGN activity and star formation is further supported by an increase in the AGN fraction with bluer rest-frame colors (U-V); we further illustrate how the location of AGNs in a color-magnitude diagram can be misleading in luminosity-limited samples due to the dependence of AGN activity on the stellar mass and the low mass-to-light ratios of blue cloud galaxies. To conclude, our results support a co-evolutionary scenario up to z~1 based on the constancy with redshift of the ratio between mass accretion rate and SFR.
We present some of the first science data with the new Keck/MOSFIRE instrument to test the effectiveness of different AGN/SF diagnostics at z~1.5. MOSFIRE spectra were obtained in three H-band multi-slit masks in the GOODS-S field, resulting in two h our exposures of 36 emission-line galaxies. We compare X-ray data with the traditional emission-line ratio diagnostics and the alternative mass-excitation and color-excitation diagrams, combining new MOSFIRE infrared data with previous HST/WFC3 infrared spectra (from the 3D-HST survey) and multiwavelength photometry. We demonstrate that a high [OIII]/Hb ratio is insufficient as an AGN indicator at z>1. For the four X-ray detected galaxies, the classic diagnostics ([OIII]/Hb vs. [NII]/Ha and [SII]/Ha) remain consistent with X-ray AGN/SF classification. The X-ray data also suggest that composite galaxies (with intermediate AGN/SF classification) host bona-fide AGNs. Nearly 2/3 of the z~1.5 emission-line galaxies have nuclear activity detected by either X-rays or the classic diagnostics. Compared to the X-ray and line ratio classifications, the mass-excitation method remains effective at z>1, but we show that the color-excitation method requires a new calibration to successfully identify AGNs at these redshifts.
We investigate the role of the delineated cosmic web/filaments on the star formation activity by exploring a sample of 425 narrow-band selected H{alpha} emitters, as well as 2846 color-color selected underlying star-forming galaxies for a large scale structure (LSS) at z=0.84 in the COSMOS field from the HiZELS survey. Using the scale-independent Multi-scale Morphology Filter (MMF) algorithm, we are able to quantitatively describe the density field and disentangle it into its major components: fields, filaments and clusters. We show that the observed median star formation rate (SFR), stellar mass, specific star formation rate (sSFR), the mean SFR-Mass relation and its scatter for both H{alpha} emitters and underlying star-forming galaxies do not strongly depend on different classes of environment, in agreement with previous studies. However, the fraction of H{alpha} emitters varies with environment and is enhanced in filamentary structures at z~1. We propose mild galaxy-galaxy interactions as the possible physical agent for the elevation of the fraction of H{alpha} star-forming galaxies in filaments. Our results show that filaments are the likely physical environments which are often classed as the intermediate densities, and that the cosmic web likely plays a major role in galaxy formation and evolution which has so far been poorly investigated.
We search for galaxies with a strong Balmer break (Balmer Break Galaxies; BBGs) at $z sim 6$ over a 0.41 deg$^2$ effective area in the COSMOS field. Based on rich imaging data, including data obtained with the Atacama Large Millimeter/submillimeter A rray (ALMA), three candidates are identified by their extremely red $K - [3.6]$ colors as well as by non-detection in X-ray, optical, far-infrared (FIR), and radio bands. The non-detection in the deep ALMA observations suggests that they are not dusty galaxies but BBGs at $z sim 6$, although contamination from Active Galactic Nuclei (AGNs) at $z sim 0$ cannot be completely ruled out for the moment. Our spectral energy distribution (SED) analyses reveal that the BBG candidates at $z sim 6$ have stellar masses of $approx 5 times 10^{10} M_{odot}$ dominated by old stellar populations with ages of $gtrsim 700$ Myr. Assuming that all the three candidates are real BBGs at $z sim 6$, we estimate the stellar mass density (SMD) to be $2.4^{+2.3}_{-1.3} times 10^{4} M_{odot}$ Mpc$^{-3}$. This is consistent with an extrapolation from the lower redshift measurements. The onset of star formation in the three BBG candidates is expected to be several hundred million years before the observed epoch of $z sim 6$. We estimate the star-formation rate density (SFRD) contributed by progenitors of the BBGs to be 2.4 -- 12 $times 10^{-5} M_{odot}$ yr$^{-1} $Mpc$^{-3}$ at $z > 14$ (99.7% confidence range). Our result suggests a smooth evolution of the SFRD beyond $z = 8$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا