ترغب بنشر مسار تعليمي؟ اضغط هنا

Star formation in galaxies hosting Active Galactic Nuclei up to z~1

108   0   0.0 ( 0 )
 نشر من قبل John D. Silverman
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review recent evidence for a clear association between accretion onto supermassive black holes and star formation up to z~1 in the zCOSMOS survey. Star formation rates (SFRs) are determined from the [OII] emission-line strength and a correction for the AGN contribution. We find that SFRs of X-ray selected AGN span a distribution of 1-100 solar masses per year and evolve in a manner that is indistinguishable from that of massive, star-forming galaxies. The close relationship between AGN activity and star formation is further supported by an increase in the AGN fraction with bluer rest-frame colors (U-V); we further illustrate how the location of AGNs in a color-magnitude diagram can be misleading in luminosity-limited samples due to the dependence of AGN activity on the stellar mass and the low mass-to-light ratios of blue cloud galaxies. To conclude, our results support a co-evolutionary scenario up to z~1 based on the constancy with redshift of the ratio between mass accretion rate and SFR.

قيم البحث

اقرأ أيضاً

We present a study of the host galaxies of AGN selected from the zCOSMOS survey to establish if accretion onto supermassive black holes and star formation are explicitly linked up to z~1. We identify 152 galaxies that harbor AGN, based on XMM observa tions of 7543 galaxies (i<22.5). Star formation rates (SFRs), including those weighted by stellar mass, are determined using the [OII]3727 emission-line, corrected for an AGN contribution. We find that the majority of AGN hosts have significant levels of star formation with a distribution spanning ~1-100 Msun yr^-1. The close association between AGN activity and star formation is further substantiated by an increase in the AGN fraction with the youthfulness of their stars as indicated by the rest-frame color (U-V) and spectral index Dn(4000); we demonstrate that mass-selection alleviates an artifical peak falling in the transition region when using luminosity-limited samples. We also find that the SFRs of AGN hosts evolve with cosmic time in a manner that closely mirrors the overall galaxy population and explains the low SFRs in AGNs (z<0.3) from the SDSS. We conclude that the conditions most conducive for AGN activity are a massive host galaxy and a large reservoir of gas. Furthermore, a direct correlation between mass accretion rate onto SMBHs and SFR is shown to be weak although the average ratio is constant with redshift, effectively shifting the evidence for a co-evolution scenario in a statistical manner to smaller physical scales. Our findings illustrate an intermittent scenario with an AGN lifetime substantially shorter than that of star formation and underlying complexities regarding fueling over vastly different physical scales yet to be determined [Abridged].
We present a measurement of the fraction of cluster galaxies hosting X-ray bright Active Galactic Nuclei (AGN) as a function of clustercentric distance scaled in units of $r_{500}$. Our analysis employs high quality Chandra X-ray and Subaru optical i maging for 42 massive X-ray selected galaxy cluster fields spanning the redshift range of $0.2 < z < 0.7$. In total, our study involves 176 AGN with bright ($R <23$) optical counterparts above a $0.5-8.0$ keV flux limit of $10^{-14} rm{erg} rm{cm}^{-2} rm{s}^{-1}$. When excluding central dominant galaxies from the calculation, we measure a cluster-galaxy AGN fraction in the central regions of the clusters that is $sim 3 $ times lower that the field value. This fraction increases with clustercentric distance before becoming consistent with the field at $sim 2.5 r_{500}$. Our data exhibit similar radial trends to those observed for star formation and optically selected AGN in cluster member galaxies, both of which are also suppressed near cluster centers to a comparable extent. These results strongly support the idea that X-ray AGN activity and strong star formation are linked through their common dependence on available reservoirs of cold gas.
88 - J. Diaz Tello 2013
We present a spectroscopic study with the derivation of the physical properties of 37 Balmer break galaxies, which have the necessary lines to locate them in star-forming-AGN diagnostic diagrams. These galaxies span a redshift range from 0.045 to 0.9 3 and are somewhat less massive than similar samples of previous works. The studied sample has multiwavelength photometric data coverage from the ultraviolet to MIR Spitzer bands. We investigate the connection between star formation and AGN activity via optical, mass-excitation (MEx) and MIR diagnostic diagrams. Through optical diagrams, 31 (84%) star-forming galaxies, 2 (5%) composite galaxies and 3 (8%) AGNs were classified, whereas from the MEx diagram only one galaxy was classified as AGN. A total of 19 galaxies have photometry available in all the IRAC/Spitzer bands. Of these, 3 AGN candidates were not classified as AGN in the optical diagrams, suggesting they are dusty/obscured AGNs, or that nuclear star formation has diluted their contributions. Furthermore, the relationship between SFR surface density (Sigma_{SFR}) and stellar mass surface density per time unit (Sigma_{M_{ast}/tau}) as a function of redshift was investigated using the [OII] lambda3727, 3729, Halpha lambda6563 luminosities, which revealed that both quantities are larger for higher redshift galaxies. We also studied the SFR and SSFR versus stellar mass and color relations, with the more massive galaxies having higher SFR values but lower SSFR values than less massive galaxies. These results are consistent with previous ones showing that, at a given mass, high-redshift galaxies have on average larger SFR and SSFR values than low-redshift galaxies. Finally, bluer galaxies have larger SSFR values than redder galaxies and for a given color the SSFR is larger for higher redshift galaxies.
We report the detection of luminous CO(2-1), CO(3-2), and CO(4-3) emission in the strongly lensed high-redshift quasars B1938+666 (z=2.059), HE0230-2130 (z=2.166), HE1104-1805 (z=2.322), and B1359+154 (z=3.240), using the Combined Array for Research in Millimeter-wave Astronomy (CARMA). B1938+666 was identified in a `blind CO redshift search, demonstrating the feasibility of such investigations with millimeter interferometers. These galaxies are lensing-amplified by factors of mu_L~11-170, and thus allow us to probe molecular gas in intrinsically fainter galaxies than currently possible without the aid of gravitational lensing. We report lensing-corrected intrinsic CO line luminosities of L(CO) = 0.65-21 x 10^9 K km/s pc^2, translating to H2 masses of M(H2) = 0.52-17 x 10^9 (alpha_CO/0.8) M_sun. To investigate whether or not the AGN in luminous quasars substantially contribute to L_FIR, we study the L(CO)-L_FIR relation for quasars relative to galaxies without a luminous AGN as a function of redshift. We find no substantial differences between submillimeter galaxies and high-z quasars, but marginal evidence for an excess in L_FIR in nearby low-L_FIR AGN galaxies. This may suggest that an AGN contribution to L_FIR is significant in systems with relatively low gas and dust content, but only minor in the most far-infrared-luminous galaxies (in which L_FIR is dominated by star formation).
We place direct observational constraints on the black-hole masses of the cosmologically important z~2 submillimeter-emitting galaxy (SMG; f850>4mJy) population, and use measured host-galaxy masses to explore their evolutionary status. We employ the well-established virial black-hole mass estimator to weigh the black holes of a sample of z~2 SMGs with broad Halpha or Hbeta emission. The average black-hole mass and Eddington ratio (eta) of the lower-luminosity broad-line SMGs (L_X~10^44 erg/s} are log(M_BH/M_sol)~8.0 and eta~0.2, respectively. These lower-luminosity broad-line SMGs lie in the same location of the L_X-L_FIR plane as more typical SMGs hosting X-ray obscured AGN and may be intrinsically similar systems, but orientated so that the rest-frame optical nucleus is visible. Under this hypothesis, we conclude that SMGs host black holes with log(M_BH/M_odot)~7.8; we find supporting evidence from observations of local ULIRGs. Combining these black-hole mass constraints with measured host-galaxy masses, we find that the black holes in SMGs are >3 times smaller than those found in comparably massive normal galaxies in the local Universe, albeit with considerable uncertainty, and >10 times smaller than those predicted for z~2 luminous quasars and radio galaxies. These results imply that the growth of the black hole lags that of the host galaxy in SMGs, in stark contrast with that previously suggested for radio galaxies and luminous quasars at z~2. On the basis of current host-galaxy mass constraints, we show that SMGs and their descendants cannot lie significantly above the locally defined M_BH-M_GAL relationship. We argue that the black holes in the z~0 descendents of SMGs will have log(M_BH/M_odot)~8.6, indicating that they only need to grow by a factor of ~6 by the present day (ABRIDGED).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا