ﻻ يوجد ملخص باللغة العربية
We report a comprehensive study of the two-phonon inter-valley (2D) Raman mode in graphene monolayers, motivated by recent reports of asymmetric 2D-mode lineshapes in freestanding graphene. For photon energies in the range $1.53 rm eV - 2.71 rm eV$, the 2D-mode Raman response of freestanding samples appears as bimodal, in stark contrast with the Lorentzian approximation that is commonly used for supported monolayers. The transition between the freestanding and supported cases is mimicked by electrostatically doping freestanding graphene at carrier densities above $2times 10^{11} rm cm^{-2}$. This result quantitatively demonstrates that low levels of charging can obscure the intrinsically bimodal 2D-mode lineshape of monolayer graphene, which can be utilized as a signature of a quasi-neutral sample. In pristine freestanding graphene, we observe a broadening of the 2D-mode feature with decreasing photon energy that cannot be rationalized using a simple one-dimensional model based on resonant textit{inner} and textit{outer} processes. This indicates that phonon wavevectors away from the high-symmetry lines of the Brillouin zone must contribute to the 2D-mode, so that a full two-dimensional calculation is required to properly describe multiphonon-resonant Raman processes.
By computing the double-resonant Raman scattering cross-section completely from first principles and including electron-electron interaction at the $GW$ level, we unravel the dominant contributions for the double-resonant 2D-mode in bilayer graphene.
The linear absorption spectra in monolayers of transition metal dichalcogenides show pronounced signatures of the exceptionally strong exciton-phonon interaction in these materials. To account for both exciton and phonon physics in such optical signa
We predict a phase transition in freestanding monolayer Xenes from the semiconducting phase to the excitonic insulating (EI) phase can be induced by reducing an external electric field below some critical value which is unique to each material. The s
The Raman 2D line of graphene is widely used for device characterization and during device fabrication as it contains valuable information on e.g. the direction and magnitude of mechanical strain and doping. Here we present systematic asymmetries in
The reduced dielectric screening in atomically thin transition metal dichalcogenides allows to study the hydrogen-like series of higher exciton states in optical spectra even at room temperature. The width of excitonic peaks provides information abou