ترغب بنشر مسار تعليمي؟ اضغط هنا

A strong electroweak phase transition in the 2HDM after LHC8

232   0   0.0 ( 0 )
 نشر من قبل Gl\\'auber Carvalho Dorsch
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nature of the electroweak phase transition in two-Higgs-doublet models is revisited in light of the recent LHC results. A scan over an extensive region of their parameter space is performed, showing that a strongly first-order phase transition favours a light neutral scalar with SM-like properties, together with a heavy pseudo-scalar (m_A^0 > 400 GeV) and a mass hierarchy in the scalar sector, m_H^+ < m_H^0 < m_A^0. We also investigate the h^0 -> gamma gamma decay channel and find that an enhancement in the branching ratio is allowed, and in some cases even preferred, when a strongly first-order phase transition is required.



قيم البحث

اقرأ أيضاً

157 - Gian F. Giudice 2013
I review the status of naturalness of the weak scale after the results from the LHC operating at an energy of 8 TeV. Talk delivered at the 2013 Europhysics Conference on High Energy Physics (EPS), Stockholm, Sweden, 18-24 July 2013.
We investigate the strength of the electroweak phase transition (EWPT) within the CP-violating 2-Higgs-Doublet Model (C2HDM). By applying a renormalisation scheme which allows efficient scans of the C2HDM parameter space, we analyse the possibility o f a strong first order EWPT required for baryogenesis and study its phenomenological implications for the LHC. Like in the CP-conserving (real) 2HDM (R2HDM) we find that a strong EWPT favours mass gaps between the non-SM-like Higgs bosons. These lead to prominent final states comprised of gauge+Higgs bosons or pairs of Higgs bosons. In contrast to the R2HDM, the CP-mixing of the C2HDM also favours approximately mass degenerate spectra with dominant decays into SM particles. The requirement of a strong EWPT further allows us to distinguish the C2HDM from the R2HDM using the signal strengths of the SM-like Higgs boson. We additionally find that a strong EWPT requires an enhancement of the SM-like trilinear Higgs coupling at next-to-leading order (NLO) by up to a factor of 2.4 compared to the NLO SM coupling, establishing another link between cosmology and collider phenomenology. We provide several C2HDM benchmark scenarios compatible with a strong EWPT and all experimental and theoretical constraints. We include the dominant branching ratios of the non-SM-like Higgs bosons as well as the Higgs pair production cross section of the SM-like Higgs boson for every benchmark point. The pair production cross sections can be substantially enhanced compared to the SM and could be observable at the high-luminosity LHC, allowing access to the trilinear Higgs couplings.
Light new physics weakly coupled to the Higgs can induce a strong first-order electroweak phase transition (EWPT). Here, we argue that scenarios in which the EWPT is driven first-order by a light scalar with mass between $sim 10$ GeV - $m_h/2$ and sm all mixing with the Higgs will be conclusively probed by the high-luminosity LHC and future Higgs factories. Our arguments are based on analytic and numerical studies of the finite-temperature effective potential and provide a well-motivated target for exotic Higgs decay searches at the LHC and future lepton colliders.
Light axions can potentially leave a cosmic background, just like neutrinos. We complete the study of thermal axion production across the electroweak scale by providing a smooth and continuous treatment through the two phases. Focusing on both flavor conserving and violating couplings to third generation quarks, we compute the amount of axions produced via scatterings and decays of thermal bath particles. We perform a model independent analysis in terms of axion effective couplings, and we also make predictions for specific microscopic QCD axion scenarios. This observable effect, parameterized as it is conventional by an effective number of additional neutrinos, is above the $1sigma$ sensitivity of future CMB-S4 surveys. Moreover, if one assumes no large hierarchies among dimensionless axion couplings to standard model particles, future axion helioscopes will provide a complementary probe for the parameter region we study.
In the $U(1)_X$ extension of the minimal supersymmetric standard model, we study a two step phase transition for the universe. The first step happens at high temperature from origin to z coordinate axis. The second step is the electroweak phase trans ition(EWPT) with barrier between two minima, which is the first order EWPT. We study the condition for this type phase transition to occur. The strong first order EWPT is our expection, and with the supposed parameters the evolution of the universe is plotted by the figures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا