ترغب بنشر مسار تعليمي؟ اضغط هنا

Theoretical prediction and spectroscopic fingerprints of an orbital transition in CeCu2Si2

117   0   0.0 ( 0 )
 نشر من قبل Leonid Pourovskii
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the heavy-fermion compound CeCu2Si2 undergoes a transition between two regimes dominated by different crystal-field states. At low pressure P and low temperature T the Ce 4f electron resides in the atomic crystal-field ground state, while at high P or T the electron occupancy and spectral weight is transferred to an excited crystal-field level that hybridizes more strongly with itinerant states. These findings result from first-principles dynamical-mean-field-theory calculations. We predict experimental signatures of this orbital transition in X-ray spectroscopy. The corresponding fluctuations may be responsible for the second high-pressure superconducting dome observed in this and similar materials.

قيم البحث

اقرأ أيضاً

We have successfully determined the hitherto unknown sign of the B44 Stevens crystal-field parameter of the tetragonal heavy-fermion compound CeCu2Si2 using vector q dependent non-resonant inelastic x-ray scattering (NIXS) experiments at the cerium N 4,5 edge. The observed difference between the two different directions q||[100] and q||[110] is due to the anisotropy of the crystal-field ground state in the (001) plane and is observable only because of the utilization of higher than dipole transitions possible in NIXS. This approach allows us to go beyond the specific limitations of dc magnetic susceptibility, inelastic neutron scattering, and soft x-ray spectroscopy, and provides us with a reliable information about the orbital state of the 4f electrons relevant for the quantitative modeling of the quasi-particles and their interactions in heavy-fermion systems.
296 - J. Zhao , K. Lee , J. Li 2018
We have employed high resolution angle resolved photoemission spectroscopy (ARPES) measurements to investigate many-body renormalizations of the single-particle excitations in $1T$-TiSe$_2$. The energy distribution curves of the ARPES data reveal int rinsic peak-dip-hump feature, while the electronic dispersion derived from the momentum distribution curves of the data highlights, for the first time, multiple kink structures. These are canonical signatures of a coupling between the electronic degrees of freedom and some Bosonic mode in the system. We demonstrate this using a model calculation of the single-particle spectral function at the presence of an electron-Boson coupling. From the self-energy analysis of our ARPES data, we discern some of the critical energy scales of the involved Bosonic mode, which are $sim$15 and 26 meV. Based on a comparison between these energies and the characteristic energy scales of our Raman scattering data, we identify these Bosonic modes as Raman active breathing (${text{A}}_text{1g}$) and shear (${text{E}}_text{g}$) modes, respectively. Direct observation of the band-renormalization due to electron-phonon coupling increases the possibility that electron-phonon interactions are central to the collective quantum states such as charge density wave (CDW) and superconductivity in the compounds based on $1T$-TiSe$_2$.
94 - F. Da Pieve 2015
A novel method for mapping the local spin and orbital nature of the ground state of a system via corresponding flip excitations in both sectors is proposed based on angle resolved resonant photoemission and related diffraction patterns, presented her e for the first time via an ab-initio modified one-step theory of photoemission. The analysis is done on the paradigmatic weak itinerant ferromagnet bcc Fe, whose magnetism, seen as a correlation phenomenon given by the coexistence of localized moments and itinerant electrons, and the non-Fermi liquid behaviour at ambient and extreme conditions both remain unclear. The results offer a real space imaging of local pure spin flip and entangled spin flip-orbital flip excitations (even at energies where spin flip transitions are hidden in quasiparticle peaks) and of chiral, vortex-like wavefronts of excited electrons, depending on the orbital character of the bands and the direction of the local magnetic moment. Such effects, mediated by the hole polarization, make resonant photoemission a promising tool to perform a full tomography of the local magnetic properties of a system with a high sensitivity to localization/correlation, even in itinerant or macroscopically non magnetic systems.
Phase transitions driven by ultrashort laser pulses have attracted interest both for understanding the fundamental physics of phase transitions and for potential new data storage or device applications. In many cases these transitions involve transie nt states that are different from those seen in equilibrium. To understand the microscopic properties of these states, it is useful to develop elementally selective probing techniques that operate in the time domain. Here we show fs-time-resolved measurements of V Ledge Resonant Inelastic X-Ray Scattering (RIXS) from the insulating phase of the Mott- Hubbard material V2O3 after ultrafast laser excitation. The probed orbital excitations within the d-shell of the V ion show a sub-ps time response, which evolve at later times to a state that appears electronically indistinguishable from the high-temperature metallic state. Our results demonstrate the potential for RIXS spectroscopy to study the ultrafast orbital dynamics in strongly correlated materials.
We investigated the electronic and vibrational properties of magnetite at temperatures from 300 K down to 10 K and for pressures up to 10 GPa by far-infrared reflectivity measurements. The Verwey transition is manifested by a drastic decrease of the overall reflectance and the splitting of the phonon modes as well as the activation of additional phonon modes. In the whole studied pressure range the down-shift of the overall reflectance spectrum saturates and the maximum number of phonon modes is reached at a critical temperature, which sets a lower bound for the Verwey transition temperature T$_{mathrm{v}}$. Based on these optical results a pressure-temperature phase diagram for magnetite is proposed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا