ترغب بنشر مسار تعليمي؟ اضغط هنا

VLBI astrometry of PSR J2222-0137: a pulsar distance measured to 0.4% accuracy

58   0   0.0 ( 0 )
 نشر من قبل Adam Deller
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The binary pulsar J2222-0137 is an enigmatic system containing a partially recycled millisecond pulsar and a companion of unknown nature. Whilst the low eccentricity of the system favors a white dwarf companion, an unusual double neutron star system is also a possibility, and optical observations will be able to distinguish between these possibilities. In order to allow the absolute luminosity (or upper limit) of the companion object to be properly calibrated, we undertook astrometric observations with the Very Long Baseline Array to constrain the system distance via a measurement of annual geometric parallax. With these observations, we measure the parallax of the J2222-0137 system to be 3.742 +0.013 -0.016 milliarcseconds, yielding a distance of 267.3 +1.2 -0.9 pc, and measure the transverse velocity to be 57.1 +0.3 -0.2 km/s. Fixing these parameters in the pulsar timing model made it possible to obtain a measurement of Shapiro delay and hence the system inclination, which shows that the system is nearly edge-on (sin i = 0.9985 +/- 0.0005). Furthermore, we were able to detect the orbital motion of J2222-0137 in our VLBI observations and measure the longitude of ascending node. The VLBI astrometry yields the most accurate distance obtained for a radio pulsar to date, and is furthermore the most accurate parallax for any radio source obtained at low radio frequencies (below ~5 GHz, where the ionosphere dominates the error budget). Using the astrometric results, we show the companion to J2222-0137 will be easily detectable in deep optical observations if it is a white dwarf. Finally, we discuss the implications of this measurement for future ultra-high-precision astrometry, in particular in support of pulsar timing arrays.

قيم البحث

اقرأ أيضاً

The PSR J2222-0137 binary system is a unique laboratory for testing gravity theories. To fully exploit its potential for the tests, we aim to improve the measurements of its physical parameters: spin, orbital orientation, and post-Keplerian parameter s which quantify the observed relativistic effects. We present improved analysis of archival VLBI data, using a coordinate convention in full agreement with that used in timing. We also obtain much improved polarimetry with FAST. We provide an analysis of significantly extended timing data taken with Effelsberg, Nancay, Lovell and Green Bank telescopes. From VLBI analysis we obtain a new estimate of the position angle of ascending node, Omega=189(19) deg, and a new position of the pulsar with more conservative uncertainty. The FAST polarimetry and in particular the detection of an interpulse, yield much improved estimate for the spin geometry of the pulsar, in particular an inclination of the spin axis of 84 deg. From the timing we obtain a new 1% test of general relativity (GR) from the agreement of the Shapiro delay and the advance rate of periastron. Assuming GR in a self-consistent analysis of all effects, we obtain much improved mass: 1.831(10) M_sun for the pulsar and 1.319(4) M_sun for the companion; the total mass, 3.150(14) M_sun confirms it as the most massive double degenerate binary known in the Galaxy. This analysis also yields the orbital orientation: the orbital inclination is 85.27(4) deg, indicating a close alignment between the spin of the pulsar and the orbital angular momentum; Omega = 188(6) deg, matching our VLBI result. We also obtain precise value of the orbital period derivative, 0.251(8)e-12 s s^-1, consistent with the expected variation of Doppler factor plus the orbital decay caused by emission of gravitational wave (GW) predicted by GR. This agreement introduces stringent constraint on the emission of dipolar GW.
We describe a data reduction pipeline for VLBI astrometric observations of pulsars, implemented using the ParselTongue AIPS interface. The pipeline performs calibration (including ionosphere modeling), phase referencing with proper accounting of refe rence source structure, amplitude corrections for pulsar scintillation, and position fitting to yield the position, proper motion and parallax. The optimal data weighting scheme to minimize the total error budget of a parallax fit, and how this scheme varies with pulsar parameters such as flux density, is also investigated. The robustness of the techniques employed are demonstrated with the presentation of the first results from a two year astrometry program using the Australian Long Baseline Array (LBA). The parallax of PSR J1559-4438 is determined to be 0.384 +- 0.081 mas (1 sigma), resulting in a distance estimate of 2600 pc which is consistent with earlier DM and HI absorption estimates.
Model-independent distance constraints to binary millisecond pulsars (MSPs) are of great value to both the timing observations of the radio pulsars, and multiwavelength observations of their companion stars. Very Long Baseline Interferometry (VLBI) a strometry can be employed to provide these model-independent distances with very high precision via the detection of annual geometric parallax. Using the Very Long Baseline Array, we have observed two binary millisecond pulsars, PSR J1022+1001 and J2145-0750, over a two-year period and measured their distances to be 700 +14 -10 pc and 613 +16 -14 pc respectively. We use the well-calibrated distance in conjunction with revised analysis of optical photometry to tightly constrain the nature of their massive (M ~ 0.85 Msun) white dwarf companions. Finally, we show that several measurements of their parallax and proper motion of PSR J1022+1001 and PSR J2145-0750 obtained by pulsar timing array projects are incorrect, differing from the more precise VLBI values by up to 5 sigma. We investigate possible causes for the discrepancy, and find that imperfect modeling of the solar wind is a likely candidate for the timing model errors given the low ecliptic latitude of these two pulsars.
With the publication of Gaia DR2, 1.3 billion stars now have public parallax and proper motion measurements. In this contribution, we compare the results for sources that have both optical and radio measurements, focusing on circumstellar masers. For these large, variable and bright AGB stars, the VLBI astrometry results can be more robust. Moreover, there are a number of applications where VLBI astrometry provides unique data for studying stellar populations and Galactic structure. The BeSSel project not only provides parallax and proper motions at much larger distances than Gaia can reach, but it also uniquely samples the spiral arms of the Galaxy. The evolved stars in the BAaDE sample can potentially constrain the dynamics and stellar content of the inner bulge and bar of the Milky Way, not reachable in the optical.
IRAS 16293-2422 is a very well studied young stellar system seen in projection towards the L1689N cloud in the Ophiuchus complex. However, its distance is still uncertain with a range of values from 120 pc to 180 pc. Our goal is to measure the trigon ometric parallax of this young star by means of H$_2$O maser emission. We use archival data from 15 epochs of VLBA observations of the 22.2 GHz water maser line. By modeling the displacement on the sky of the H$_2$O maser spots, we derived a trigonometric parallax of $7.1pm1.3$ mas, corresponding to a distance of $141_{-21}^{+30}$ pc. This new distance is in good agreement with recent values obtained for other magnetically active young stars in the L1689 cloud. We relate the kinematics of these masers with the outflows and the recent ejections powered by source A in the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا