ﻻ يوجد ملخص باللغة العربية
IRAS 16293-2422 is a very well studied young stellar system seen in projection towards the L1689N cloud in the Ophiuchus complex. However, its distance is still uncertain with a range of values from 120 pc to 180 pc. Our goal is to measure the trigonometric parallax of this young star by means of H$_2$O maser emission. We use archival data from 15 epochs of VLBA observations of the 22.2 GHz water maser line. By modeling the displacement on the sky of the H$_2$O maser spots, we derived a trigonometric parallax of $7.1pm1.3$ mas, corresponding to a distance of $141_{-21}^{+30}$ pc. This new distance is in good agreement with recent values obtained for other magnetically active young stars in the L1689 cloud. We relate the kinematics of these masers with the outflows and the recent ejections powered by source A in the system.
We present ALMA and VLA observations of the molecular and ionized gas at 0.1-0.3 arcsec resolution in the Class 0 protostellar system IRAS 16293-2422. These data clarify the origins of the protostellar outflows from the deeply embedded sources in thi
We have analyzed rotational spectral line emission of OCS, CH3OH, HCOOCH3, and H2CS observed toward the low-mass Class 0 protostellar source IRAS 16293-2422 Source A at a sub-arcsecond resolution (~0.6 x 0.5) with ALMA. Significant chemical different
We present 3 mm ALMA continuum and line observations at resolutions of 6.5 au and 13 au respectively, toward the Class 0 system IRAS 16293-2422 A. The continuum observations reveal two compact sources towards IRAS 16293-2422 A, coinciding with compac
This paper was withdrawed from the ApJ after the comments from the referee, please be carefully.
Shock-induced H2O masers are important magnetic field tracers at very high density gas. Water masers are found in both high- and low-mass star-forming regions, acting as a powerful tool to compare magnetic field morphologies in both mass regimes. In