ترغب بنشر مسار تعليمي؟ اضغط هنا

A revised distance to IRAS 16293$-$2422 from VLBA astrometry of associated water masers

95   0   0.0 ( 0 )
 نشر من قبل Sergio Abraham Dzib Quijano
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

IRAS 16293-2422 is a very well studied young stellar system seen in projection towards the L1689N cloud in the Ophiuchus complex. However, its distance is still uncertain with a range of values from 120 pc to 180 pc. Our goal is to measure the trigonometric parallax of this young star by means of H$_2$O maser emission. We use archival data from 15 epochs of VLBA observations of the 22.2 GHz water maser line. By modeling the displacement on the sky of the H$_2$O maser spots, we derived a trigonometric parallax of $7.1pm1.3$ mas, corresponding to a distance of $141_{-21}^{+30}$ pc. This new distance is in good agreement with recent values obtained for other magnetically active young stars in the L1689 cloud. We relate the kinematics of these masers with the outflows and the recent ejections powered by source A in the system.



قيم البحث

اقرأ أيضاً

295 - Laurent Loinard 2012
We present ALMA and VLA observations of the molecular and ionized gas at 0.1-0.3 arcsec resolution in the Class 0 protostellar system IRAS 16293-2422. These data clarify the origins of the protostellar outflows from the deeply embedded sources in thi s complex region. Source A2 is confirmed to be at the origin of the well known large scale north-east--south-west flow. The most recent VLA observations reveal a new ejection from that protostar, demonstrating that it drives an episodic jet. The central compact part of the other known large scale flow in the system, oriented roughly east-west, is well delineated by the CO(6-5) emission imaged with ALMA and is confirmed to be driven from within component A. Finally, a one-sided blueshifted bubble-like outflow structure is detected here for the first time from source B to the north-west of the system. Its very short dynamical timescale (~ 200 yr), low velocity, and moderate collimation support the idea that source B is the youngest object in the system, and possibly one of the youngest protostars known.
We have analyzed rotational spectral line emission of OCS, CH3OH, HCOOCH3, and H2CS observed toward the low-mass Class 0 protostellar source IRAS 16293-2422 Source A at a sub-arcsecond resolution (~0.6 x 0.5) with ALMA. Significant chemical different iation is found at a 50 AU scale. The OCS line is found to well trace the infalling-rotating envelope in this source. On the other hand, the CH3OH and HCOOCH3 distributions are found to be concentrated around the inner part of the infalling-rotating envelope. With a simple ballistic model of the infalling-rotating envelope, the radius of the centrifugal barrier (a half of the centrifugal radius) and the protostellar mass are evaluated from the OCS data to be from 40 to 60 AU and from 0.5 to 1.0 Msun, respectively, assuming the inclination angle of the envelope/disk structure to be 60 degrees (90 degrees for the edge-on configuration). Although the protostellar mass is correlated with the inclination angle, the radius of the centrifugal barrier is not. This is the first indication of the centrifugal barrier of the infalling-rotating envelope in a hot corino source. CH3OH and HCOOCH3 may be liberated from ice mantles due to weak accretion shocks around the centrifugal barrier, and/or due to protostellar heating. The H2CS emission seems to come from the disk component inside the centrifugal barrier in addition to the envelope component. The centrifugal barrier plays a central role not only in the formation of a rotationally-supported disk but also in the chemical evolution from the envelope to the protoplanetary disk.
We present 3 mm ALMA continuum and line observations at resolutions of 6.5 au and 13 au respectively, toward the Class 0 system IRAS 16293-2422 A. The continuum observations reveal two compact sources towards IRAS 16293-2422 A, coinciding with compac t ionized gas emission previously observed at radio wavelengths (A1 and A2), confirming the long-known radio sources as protostellar. The emission towards A2 is resolved and traces a dust disk with a FWHM size of ~12 au, while the emission towards A1 sets a limit to the FWHM size of the dust disk of ~4 au. We also detect spatially resolved molecular kinematic tracers near the protostellar disks. Several lines of the J=5-4 rotational transition of HNCO, NH2CHO and t-HCOOH are detected, with which we derived individual line-of-sight velocities. Using these together with the CS (J=2-1), we fit Keplerian profiles towards the individual compact sources and derive masses of the central protostars. The kinematic analysis indicates that A1 and A2 are a bound binary system. Using this new context for the previous 30 years of VLA observations, we fit orbital parameters to the relative motion between A1 and A2 and find the combined protostellar mass derived from the orbit is consistent with the masses derived from the gas kinematics. Both estimations indicate masses consistently higher (0.5< M1<M2<2 Msun) than previous estimations using lower resolution observations of the gas kinematics. The ALMA high-resolution data provides a unique insight into the gas kinematics and masses of a young deeply embedded bound binary system.
126 - Felipe O. Alves n 2012
Shock-induced H2O masers are important magnetic field tracers at very high density gas. Water masers are found in both high- and low-mass star-forming regions, acting as a powerful tool to compare magnetic field morphologies in both mass regimes. In this paper, we show one of the first magnetic field determinations in the low-mass protostellar core IRAS 16293-2422 at volume densities as high as 10^(8-10) cm^-3. Our goal is to discern if the collapsing regime of this source is controlled by magnetic fields or other factors like turbulence. We used the Very Large Array (VLA) to carry out spectro-polarimetric observations in the 22 GHz Zeeman emission of H2O masers. From the Stokes V line profile, we can estimate the magnetic field strength in the dense regions around the protostar. A blend of at least three maser features can be inferred from our relatively high spatial resolution data set (~ 0.1), which is reproduced in a clear non-Gaussian line profile. The emission is very stable in polarization fraction and position angle across the channels. The maser spots are aligned with some components of the complex outflow configuration of IRAS 16293-2422, and they are excited in zones of compressed gas produced by shocks. The post-shock particle density is in the range of 1-3 x 10^9 cm^-3, consistent with typical water masers pumping densities. Zeeman emission is produced by a very strong line-of-sight magnetic field (B ~ 113 mG). The magnetic field pressure derived from our data is comparable to the ram pressure of the outflow dynamics. This indicates that the magnetic field is energetically important in the dynamical evolution of IRAS 16293-2422.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا