ترغب بنشر مسار تعليمي؟ اضغط هنا

Qi-Wa, a problem that has plagued Chinese scrolls for millenniums

304   0   0.0 ( 0 )
 نشر من قبل Tzay-ming Hong
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Qi-Wa refers to the up curl on the lengths of handscrolls and hanging scrolls, which has troubled Chinese artisans and emperors for as long as the art of painting and calligraphy exists. This warp is unwelcomed not only for aesthetic reasons, but its potential damage to the fiber and ink. Although it is generally treated as a part of the cockling and curling due to climate, mounting procedures, and conservation conditions, we emphasize that the intrinsic curvature incurred from the storage is in fact the main cause of Qi-Wa. The Qi-Wa height is determined by experiments to obey scaling relations with the length, width, curvature, and thickness of the scroll, which are supported by Molecular Dynamics Simulation and theoretic derivations. This understanding helps us come up with plausible remedies to mitigate Qi-Wa. All proposals are tested on real mounted paper and in simulations. Due to the general nature of this warp, we believe the lessons learnt from studying ancient Chinese scrolls can be applied to modern technologies such as the development of flexible electronic paper and computer screen.

قيم البحث

اقرأ أيضاً

We report on experimental results where a temporal intensity profile presenting some of the main signatures of the Peregrine soliton (PS) is observed. However, the emergence of a highly peaked structure over a continuous background in a normally disp ersive fiber cannot be linked to any PS dynamics and is mainly ascribed to the impact of Brillouin backscattering.
We study the large-$n$ limit of the probability $p_{2n,2k}$ that a random $2ntimes 2n$ matrix sampled from the real Ginibre ensemble has $2k$ real eigenvalues. We prove that, $$lim_{nrightarrow infty}frac {1}{sqrt{2n}} log p_{2n,2k}=lim_{nrightarrow infty}frac {1}{sqrt{2n}} log p_{2n,0}= -frac{1}{sqrt{2pi}}zetaleft(frac{3}{2}right),$$ where $zeta$ is the Riemann zeta-function. Moreover, for any sequence of non-negative integers $(k_n)_{ngeq 1}$, $$lim_{nrightarrow infty}frac {1}{sqrt{2n}} log p_{2n,2k_n}=-frac{1}{sqrt{2pi}}zetaleft(frac{3}{2}right),$$ provided $lim_{nrightarrow infty} left(n^{-1/2}log(n)right) k_{n}=0$.
The recent availability of quantum annealers has fueled a new area of information technology where such devices are applied to address practically motivated and computationally difficult problems with hardware that exploits quantum mechanical phenome na. D-Wave annealers are promising platforms to solve these problems in the form of quadratic unconstrained binary optimization. Here we provide a formulation of the Chinese postman problem that can be used as a tool for probing the local connectivity of graphs and networks. We treat the problem classically with a tabu algorithm and using a D-Wave device. We systematically analyze computational parameters associated with the specific hardware. Our results clarify how the interplay between the embedding due to limited connectivity of the Chimera graph, the definition of logical qubits, and the role of spin-reversal controls the probability of reaching the expected solution.
We present a computational study on the folding and aggregation of proteins in aqueous environment, as function of its concentration. We show how the increase of the concentration of individual protein species can induce a partial unfolding of the na tive conformation without the occurrence of aggregates. A further increment of the protein concentration results in the complete loss of the folded structures and induces the formation of protein aggregates. We discuss the effect of the protein interface on the water fluctuations in the protein hydration shell and their relevance in the protein-protein interaction.
66 - E. Aurell , K. Sneppen 2001
We develop a framework to discuss stability of epigenetic states as first exit problems in dynamical systems with noise. We consider in particular the stability of the lysogenic state of the lambda prophage, which is known to exhibit exceptionally la rge stability. The formalism defines a quantative measure of robustness of inherited states. In contrast to Kramers well-known problem of escape from a potential well, the stability of inherited states in our formulation is not a numerically trivial problem. The most likely exit path does not go along a steepest decent of a potential -- there is no potential. Instead, such a path can be described as a zero-energy trajectory between two equilibria in an auxiliary classical mechanical system. Finding it is similar to e.g. computing heteroclinic orbits in celestial mechanics. The overall lesson of this study is that an examination of equilibria and their bifurcations with changing parameter values allow us to quantify both the stability and the robustness of particular states of a genetic control system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا