ترغب بنشر مسار تعليمي؟ اضغط هنا

A Peregrine soliton-like structure that has nothing to deal with a Peregrine breather

100   0   0.0 ( 0 )
 نشر من قبل Christophe Finot
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Christophe Finot




اسأل ChatGPT حول البحث

We report on experimental results where a temporal intensity profile presenting some of the main signatures of the Peregrine soliton (PS) is observed. However, the emergence of a highly peaked structure over a continuous background in a normally dispersive fiber cannot be linked to any PS dynamics and is mainly ascribed to the impact of Brillouin backscattering.



قيم البحث

اقرأ أيضاً

100 - Gang Xu , Amin Chabchoub 2018
We present a detailed study of the phase properties of rational breather waves observed in the hydrodynamic and optical domains, namely the Peregrine soliton and related second-order solution. At the point of maximum compression, our experimental res ults recorded in a wave tank or using an optical fiber platform reveal a characteristic phase shift that is multiple of $pi$ between the central part of the pulse and the continuous background, in agreement with analytical and numerical predictions. We also stress the existence of a large longitudinal phase shift across the point of maximum compression.
180 - A. Tikan , C. Billet , G. El 2017
We present experimental evidence of the universal emergence of the Peregrine soliton predicted in the semi-classical (zero-dispersion) limit of the focusing nonlinear Schr{o}dinger equation [Comm. Pure Appl. Math. {bf 66}, 678 (2012)]. Experiments st udying higher-order soliton propagation in optical fiber use an optical sampling oscilloscope and frequency-resolved optical gating to characterise intensity and phase around the first point of soliton compression and the results show that the properties of the compressed pulse and background pedestal can be interpreted in terms of the Peregrine soliton. Experimental and numerical results reveal that the universal mechanism under study is highly robust and can be observed over a broad range of parameters, and experiments are in very good agreement with numerical simulations.
Solitons are coherent structures that describe the nonlinear evolution of wave localizations in hydrodynamics, optics, plasma and Bose-Einstein condensates. While the Peregrine breather is known to amplify a single localized perturbation of a carrier wave of finite amplitude by a factor of three, there is a counterpart solution on zero background known as the degenerate two-soliton which also leads to high amplitude maxima. In this study, we report several observations of such multi-soliton with doubly-localized peaks in a water wave flume. The data collected in this experiment confirm the distinctive attainment of wave amplification by a factor of two in good agreement with the dynamics of the nonlinear Schrodinger equation solution. Advanced numerical simulations solving the problem of nonlinear free water surface boundary conditions of an ideal fluid quantify the physical limitations of the degenerate two-soliton in hydrodynamics.
Being considered as a prototype for description of oceanic rogue waves (RWs), the Peregrine breather solution of the nonlinear Schrodinger equation (NLS) has been recently observed and intensely investigated experimentally in particular within the co ntext of water waves. Here, we report the experimental results showing the evolution of the Peregrine solution in the presence of wind forcing in the direction of wave propagation. The results show the persistence of the breather evolution dynamics even in the presence of strong wind and chaotic wave field generated by it. Furthermore, we have shown that characteristic spectrum of the Peregrine breather persists even at the highest values of the generated wind velocities thus making it a viable characteristic for prediction of rogue waves.
122 - Samit Kumar Gupta 2017
In this work, based on the recently proposed (Phys. Rev. Lett. 110 (2013) 064105) continuous nonlocal nonlinear Schrodinger system with parity-time symmetric Kerr nonlinearity (PTNLSE), a numerical investigation has been carried out for two first ord er Peregrine solitons as the initial ansatz. Peregrine soliton, as an exact solution to the PTNLSE, evokes a very potent question: what effects does the interaction of two first order Peregrine solitons have on the overall optical field dynamics. Upon numerical computation, we observe the appearance of Kuznetsov-Ma (KM) soliton trains in the unbroken PT-phase when the initial Peregrine solitons are in phase. In the out of phase condition, it shows repulsive nonlinear waves. Quite interestingly, our study shows that within a specific range of the interval factor in the transverse coordinate there exists a string of high intensity well-localized Peregrine rogue waves in the PT unbroken phase. We note that the interval factor as well as the transverse shift parameter play important roles in the nonlinear interaction and evolution dynamics of the optical fields. This could be important in developing fundamental understanding of nonlocal non-Hermitian NLSE systems and dynamic wave localization behaviors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا