ﻻ يوجد ملخص باللغة العربية
We report on experimental results where a temporal intensity profile presenting some of the main signatures of the Peregrine soliton (PS) is observed. However, the emergence of a highly peaked structure over a continuous background in a normally dispersive fiber cannot be linked to any PS dynamics and is mainly ascribed to the impact of Brillouin backscattering.
We present a detailed study of the phase properties of rational breather waves observed in the hydrodynamic and optical domains, namely the Peregrine soliton and related second-order solution. At the point of maximum compression, our experimental res
We present experimental evidence of the universal emergence of the Peregrine soliton predicted in the semi-classical (zero-dispersion) limit of the focusing nonlinear Schr{o}dinger equation [Comm. Pure Appl. Math. {bf 66}, 678 (2012)]. Experiments st
Solitons are coherent structures that describe the nonlinear evolution of wave localizations in hydrodynamics, optics, plasma and Bose-Einstein condensates. While the Peregrine breather is known to amplify a single localized perturbation of a carrier
Being considered as a prototype for description of oceanic rogue waves (RWs), the Peregrine breather solution of the nonlinear Schrodinger equation (NLS) has been recently observed and intensely investigated experimentally in particular within the co
In this work, based on the recently proposed (Phys. Rev. Lett. 110 (2013) 064105) continuous nonlocal nonlinear Schrodinger system with parity-time symmetric Kerr nonlinearity (PTNLSE), a numerical investigation has been carried out for two first ord