ﻻ يوجد ملخص باللغة العربية
Simulation codes for galaxy formation and evolution take on board as many physical processes as possible beyond the standard gravitational and hydrodynamical physics. Most of this extra physics takes place below the resolution level of the simulations and is added in a sub-grid fashion. However, these sub-grid processes affect the macroscopic hydrodynamical properties of the gas and thus couple to the on-grid physics that is explicitly integrated during the simulation. In this paper, we focus on the link between partial ionization and the hydrodynamical equations. We show that the energy stored in ions and free electrons constitutes a potential energy term which breaks the linear dependence of the internal energy on temperature. Correctly taking into account ionization hence requires modifying both the equation of state and the energy-temperature relation. We implemented these changes in the cosmological simulation code Gadget2. As an example of the effects of these changes, we study the propagation of Sedov-Taylor shock waves through an ionizing medium. This serves as a proxy for the absorption of supernova feedback energy by the interstellar medium. Depending on the density and temperature of the surrounding gas, we find that up to 50% of the feedback energy is spent ionizing the gas rather than heating it. Thus, it can be expected that properly taking into account ionization effects in galaxy evolution simulations will drastically reduce the effects of thermal feedback. To the best of our knowledge, this potential energy term is not used in current simulations of galaxy formation and evolution.
We present a new comprehensive model of the physics of galaxy formation designed for large-scale hydrodynamical simulations of structure formation using the moving mesh code AREPO. Our model includes primordial and metal line cooling with self-shield
Understanding the origin of the astonishing diversity of exoplanets is a key question for the coming decades. ALMA has revolutionized our view of the dust emission from protoplanetary disks, demonstrating the prevalence of ring and spiral structures
We investigate the ionization structure of the nebular gas in M83 using the line diagnostic diagram, [O III](5007 degA)/H{beta} vs. [S II](6716 deg A+6731 deg A)/H{alpha} with the newly available narrowband images from the Wide Field Camera 3 (WFC3)
We report the detection of CO 2-1, 5-4, and 6-5 emission in the highest-redshift submillimeter galaxy (SMG) AzTEC-3 at z=5.298, using the Expanded Very Large Array and the Plateau de Bure Interferometer. These observations ultimately confirm the reds
We present an atlas of three-dimensional (position-position-velocity) spectra of the Orion Nebula in optical emission lines from a variety of different ionization stages: [O I] 6300, [S II] 6716,6731, [N II] 6584, [S III] 6312, H alpha 6563, and [O I