ترغب بنشر مسار تعليمي؟ اضغط هنا

A Massive Molecular Gas Reservoir in the z=5.3 Submillimeter Galaxy AzTEC-3

71   0   0.0 ( 0 )
 نشر من قبل Dominik Riechers
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of CO 2-1, 5-4, and 6-5 emission in the highest-redshift submillimeter galaxy (SMG) AzTEC-3 at z=5.298, using the Expanded Very Large Array and the Plateau de Bure Interferometer. These observations ultimately confirm the redshift, making AzTEC-3 the most submillimeter-luminous galaxy in a massive z=5.3 protocluster structure in the COSMOS field. The strength of the CO line emission reveals a large molecular gas reservoir with a mass of 5.3e10 (alpha_CO/0.8) Msun, which can maintain the intense 1800 Msun/yr starburst in this system for at least 30 Myr, increasing the stellar mass by up to a factor of six in the process. This gas mass is comparable to `typical z~2 SMGs, and constitutes >~80% of the baryonic mass (gas+stars) and 30%-80% of the total (dynamical) mass in this galaxy. The molecular gas reservoir has a radius of <4 kpc and likely consists of a `diffuse, low-excitation component, containing (at least) 1/3 of the gas mass (depending on the relative conversion factor alpha_CO), and a `dense, high-excitation component, containing ~2/3 of the mass. The likely presence of a substantial diffuse component besides highly-excited gas suggests different properties between the star-forming environments in z>4 SMGs and z>4 quasar host galaxies, which perhaps trace different evolutionary stages. The discovery of a massive, metal-enriched gas reservoir in a SMG at the heart of a large z=5.3 protocluster considerably enhances our understanding of early massive galaxy formation, pushing back to a cosmic epoch where the Universe was less than 1/12 of its present age.

قيم البحث

اقرأ أيضاً

Analyses of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation ra te (SFR), the stellar mass, and age of these objects. An important observational constraint neglected in the analysis is the mass of dust giving rise to the IR emission. In this paper we add this constraint to the analysis of AzTEC-3. Adopting an upper limit to the mass of stars and a bolometric luminosity for this object, we construct stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. We find that the model with a Top Heavy IMF provided the most plausible scenario consistent with the observational constraints. In this scenario the dust formed over a period of ~200 Myr, with a SFR of ~500 Msun/yr. These values for the age and SFR in AzTEC-3 are significantly higher and lower, respectively, from those derived without the dust mass constraint. However, this scenario is not unique, and others cannot be completely ruled out because of the prevailing uncertainties in the age of the galaxy, its bolometric luminosity, and its stellar and dust masses. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multiwavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.
105 - Bin Liu , N. Chartab , H. Nayyeri 2021
We present multi-band observations of an extremely dusty star-forming lensed galaxy (HERS1) at $z=2.553$. High-resolution maps of textit{HST}/WFC3, SMA, and ALMA show a partial Einstein-ring with a radius of $sim$3$^{primeprime}$. The deeper HST obse rvations also show the presence of a lensing arc feature associated with a second lens source, identified to be at the same redshift as the bright arc based on a detection of the [NII] 205$mu$m emission line with ALMA. A detailed model of the lensing system is constructed using the high-resolution HST/WFC3 image, which allows us to study the source plane properties and connect rest-frame optical emission with properties of the galaxy as seen in sub-millimeter and millimeter wavelengths. Corrected for lensing magnification, the spectral energy distribution fitting results yield an intrinsic star formation rate of about $1000pm260$ ${rm M_{odot}}$yr$^{-1}$, a stellar mass ${rm M_*}=4.3^{+2.2}_{-1.0}times10^{11} {rm M_{odot}}$, and a dust temperature ${rm T}_{rm d}=35^{+2}_{-1}$ K. The intrinsic CO emission line ($J_{rm up}=3,4,5,6,7,9$) flux densities and CO spectral line energy distribution are derived based on the velocity-dependent magnification factors. We apply a radiative transfer model using the large velocity gradient method with two excitation components to study the gas properties. The low-excitation component has a gas density $n_{rm H_2}=10^{3.1pm0.6}$ cm$^{-3}$ and kinetic temperature ${rm T}_{rm k}=19^{+7}_{-5}$ K and a high-excitation component has $n_{rm H_2}=10^{2.8pm0.3}$ cm$^{-3}$ and ${rm T}_{rm k}=550^{+260}_{-220}$ K. Additionally, HERS1 has a gas fraction of about $0.4pm0.2$ and is expected to last 250 Myr. These properties offer a detailed view of a typical sub-millimeter galaxy during the peak epoch of star-formation activity.
We report the detection of spatially extended CO 1-0 and 5-4 emission in the z=2.49 submillimeter galaxy (SMG) J123707+6214, using the Expanded Very Large Array and the Plateau de Bure Interferometer. The large molecular gas reservoir is spatially re solved into two CO(1-0) components (north-east and south-west; previously identified in CO 3-2 emission) with gas masses of 4.3 and 3.5 x 10^10 (alpha_CO/0.8) Msun. We thus find that the optically invisible north-east component slightly dominates the gas mass in this system. The total molecular gas mass derived from the CO(1-0) observations is ~2.5 times larger than estimated from CO(3-2). The two components are at approximately the same redshift, but separated by ~20 kpc in projection. The morphology is consistent with that of an early-stage merger. The total amount of molecular gas is sufficient to maintain the intense 500 Msun/yr starburst in this system for at least ~160 Myr. We derive line brightness temperature ratios of r_31=0.39+/-0.09 and 0.37+/-0.10, and r_51=0.26+/-0.07 and 0.25+/-0.08 in the two components, respectively, suggesting that the J>=3 lines are substantially subthermally excited. This also suggests comparable conditions for star formation in both components. Given the similar gas masses of both components, this is consistent with the comparable starburst strengths observed in the radio continuum emission. Our findings are consistent with other recent studies that find evidence for lower CO excitation in SMGs than in high-z quasar host galaxies with comparable gas masses. This may provide supporting evidence that both populations correspond to different evolutionary stages in the formation of massive galaxies.
We report the detection of spatially resolved CO(1-0) emission in the z~3.4 submillimeter galaxies (SMGs) SMM J09431+4700 and SMM J13120+4242, using the Expanded Very Large Array (EVLA). SMM J09431+4700 is resolved into the two previously reported mi llimeter sources H6 and H7, separated by ~30kpc in projection. We derive CO(1-0) line luminosities of L(CO 1-0) = (2.49+/-0.86) and (5.82+/-1.22) x 10^10 K km/s pc^2 for H6 and H7, and L(CO 1-0) = (23.4+/-4.1) x 10^10 K km/s pc^2 for SMM J13120+4242. These are ~1.5-4.5x higher than what is expected from simple excitation modeling of higher-J CO lines, suggesting the presence of copious amounts of low-excitation gas. This is supported by the finding that the CO(1-0) line in SMM J13120+4242, the system with lowest CO excitation, appears to have a broader profile and more extended spatial structure than seen in higher-J CO lines (which is less prominently seen in SMM J09431+4700). Based on L(CO 1-0) and excitation modeling, we find M_gas = 2.0-4.3 and 4.7-12.7 x 10^10 Msun for H6 and H7, and M_gas = 18.7-69.4 x 10^10 Msun for SMM J13120+4242. The observed CO(1-0) properties are consistent with the picture that SMM J09431+4700 represents an early-stage, gas-rich major merger, and that SMM J13120+4242 represents such a system in an advanced stage. This study thus highlights the importance of spatially and dynamically resolved CO(1-0) observations of SMGs to further understand the gas physics that drive star formation in these distant galaxies, which becomes possible only now that the EVLA rises to its full capabilities.
We report the detection of CO(J=3-2) line emission in the strongly-lensed submillimeter galaxy (SMG) SMM J0939+8315 at z=2.221, using the Combined Array for Research in Millimeter-wave Astronomy. SMM J0939+8315 hosts a type-2 quasar, and is gravitati onally lensed by the radio galaxy 3C220.3 and its companion galaxy at z=0.685. The 104 GHz continuum emission underlying the CO line is detected toward 3C220.3 with an integrated flux density of S_cont = 7.4 +/- 1.4 mJy. Using the CO(J=3-2) line intensity of I_(CO(3-2)) = (12.6 +/- 2.0) Jy km s^-1, we derive a lensing- and excitation-corrected CO line luminosity of L(CO(3-2)) = (3.4 +/- 0.7) x 10^10 (10.1/mu_L) K km s^-1 pc^2 for the SMG, where mu_L is the lensing magnification factor inferred from our lens modeling. This translates to a molecular gas mass of M_gas = (2.7 +/- 0.6) x 10^10 (10.1/mu_L) Msun. Fitting spectral energy distribution models to the (sub)-millimeter data of this SMG yields a dust temperature of T = 63.1^{+1.1}_{-1.3} K, a dust mass of M_dust = (5.2 +/- 2.1) x 10^8 (10.1/mu_L) Msun, and a total infrared luminosity of L_IR = (9.1 +/- 1.2) x 10^12 (10.1/mu_L) Lsun. We find that the properties of the interstellar medium of SMM J0939+8315 overlap with both SMGs and type-2 quasars. Hence, SMM J0939+8315 may be transitioning from a star-bursting phase to an unobscured quasar phase as described by the evolutionary link model, according to which this system may represent an intermediate stage in the evolution of present-day galaxies at an earlier epoch.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا