ترغب بنشر مسار تعليمي؟ اضغط هنا

Classification of complex naturally graded quasi-filiform Zinbiel algebras

197   0   0.0 ( 0 )
 نشر من قبل Bakhrom Omirov Abdazovich
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work the description up to isomorphism of complex naturally graded quasi-filiform Zinbiel algebras is obtained.



قيم البحث

اقرأ أيضاً

In this paper we show that the method for describing solvable Lie algebras with given nilradical by means of non-nilpotent outer derivations of the nilradical is also applicable to the case of Leibniz algebras. Using this method we extend the classif ication of solvable Lie algebras with naturally graded filiform Lie algebra to the case of Leibniz algebras. Namely, the classification of solvable Leibniz algebras whose nilradical is a naturally graded filiform Leibniz algebra is obtained.
We present the classification of a subclass of $n$-dimensional naturally graded Zinbiel algebras. This subclass has the nilindex $n-3$ and the characteristic sequence $(n-3,2,1).$ In fact, this result completes the classification of naturally graded Zinbiel algebras of nilindex $n-3.$
In this paper we describe central extensions of some nilpotent Leibniz algebras. Namely, central extensions of the Leibniz algebra with maximal index of nilpotency are classified. Moreover, non-split central extensions of naturally graded filiform no n-Lie Leibniz algebras are described up to isomorphism. It is shown that $k$-dimensional central extensions ($kgeq 5$) of these algebras are split.
In this paper solvable Leibniz algebras with naturally graded non-Lie $p$-filiform $(n-pgeq4)$ nilradical and with one-dimensional complemented space of nilradical are described. Moreover, solvable Leibniz algebras with abelian nilradical and extrema l (minimal, maximal) dimensions of complemented space nilradical are studied. The rigidity of solvable Leibniz algebras with abelian nilradical and maximal dimension of its complemented space is proved.
We describe infinitesimal deformations of complex naturally graded filiform Leibniz algebras. It is known that any $n$-dimensional filiform Lie algebra can be obtained by a linear integrable deformation of the naturally graded algebra $F_n^3(0)$. We establish that in the same way any $n$-dimensional filiform Leibniz algebra can be obtained by an infinitesimal deformation of the filiform Leibniz algebras $F_{n}^1,$ $F_{n}^2$ and $F_{n}^3(alpha)$. Moreover, we describe the linear integrable deformations of above-mentioned algebras with a fixed basis of $HL^2$ in the set of all $n$-dimensional Leibniz algebras. Among these deformations we found one new rigid algebra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا