ﻻ يوجد ملخص باللغة العربية
We present an algorithm for a time-delayed feedback control design to stabilize periodic orbits with an odd number of positive Floquet exponents in autonomous systems. Due to the so-called odd number theorem such orbits have been considered as uncontrollable by time-delayed feedback methods. However, this theorem has been refuted by a counterexample and recently a corrected version of the theorem has been proved. In our algorithm, the control matrix is designed using a relationship between Floquet multipliers of the systems controlled by time-delayed and proportional feedback. The efficacy of the algorithm is demonstrated with the Lorenz and Chua systems.
We refute an often invoked theorem which claims that a periodic orbit with an odd number of real Floquet multipliers greater than unity can never be stabilized by time-delayed feedback control in the form proposed by Pyragas. Using a generic normal f
Time-delayed feedback methods can be used to control unstable periodic orbits as well as unstable steady states. We present an application of extended time delay autosynchronization introduced by Socolar et al. to an unstable focus. This system repre
We present an analysis of time-delayed feedback control used to stabilize an unstable steady state of a neutral delay differential equation. Stability of the controlled system is addressed by studying the eigenvalue spectrum of a corresponding charac
We investigate the possibility to suppress noise-induced intensity pulsations (relaxation oscillations) in semiconductor lasers by means of a time-delayed feedback control scheme. This idea is first studied in a generic normal form model, where we de
In this paper we study the stabilization of rotating waves using time delayed feedback control. It is our aim to put some recent results in a broader context by discussing two different methods to determine the stability of the target periodic orbit