ﻻ يوجد ملخص باللغة العربية
Given a Sasaki-Einstein manifold, M_7, there is the N=2 supersymmetric AdS_4 x M_7 Freund-Rubin solution of eleven-dimensional supergravity and the corresponding non-supersymmetric solutions: the perturbatively stable skew-whiffed solution, the perturbatively unstable Englert solution, and the Pope-Warner solution, which is known to be perturbatively unstable when M_7 is the seven-sphere or, more generally, a tri-Sasakian manifold. We show that similar perturbative instability of the Pope-Warner solution will arise for any Sasaki-Einstein manifold, M_7, admitting a basic, primitive, transverse (1,1)-eigenform of the Hodge-de Rham Laplacian with the eigenvalue in the range between 2(9-4sqrt 3) and 2(9+4sqrt 3). Existence of such (1,1)-forms on all homogeneous Sasaki-Einstein manifolds can be shown explicitly using the Kahler quotient construction or the standard harmonic expansion. The latter shows that the instability arises from the coupling between the Pope-Warner background and Kaluza-Klein scalar modes that at the supersymmetric point lie in a long Z-vector supermultiplet. We also verify that the instability persists for the orbifolds of homogeneous Sasaki-Einstein manifolds that have been discussed recently.
This article is an overview of some of the remarkable progress that has been made in Sasaki-Einstein geometry over the last decade, which includes a number of new methods of constructing Sasaki-Einstein manifolds and obstructions.
We extend profound results in pluripotential theory on Kahler manifolds to Sasaki setting via its transverse Kahler structure. As in Kahler case, these results form a very important piece to solve the existence of Sasaki metrics with constant scalar
We study (transverse) scalar curvature type equation on compact Sasaki manifolds, in view of recent breakthrough of Chen-Cheng cite{CC1, CC2, CC3} on existence of Kahler metrics with constant scalar curvature (csck) on compact Kahler manifolds. Follo
Let $L_f$ be a link of an isolated hypersurface singularity defined by a weighted homogenous polynomial $f.$ In this article, we give ten examples of $2$-connected seven dimensional Sasaki-Einstein manifolds $L_f$ for which $H_{3}(L_f, mathbb{Z})$ is
We review various methods for finding exact solutions of higher spin theory in four dimensions, and survey the known exact solutions of (non)minimal Vasilievs equations. These include instanton-like and black hole-like solutions in (A)dS and Kleinian