ترغب بنشر مسار تعليمي؟ اضغط هنا

Condensation of random walks and the Wulff crystal

157   0   0.0 ( 0 )
 نشر من قبل Nathanael Berestycki
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a Gibbs measure on nearest-neighbour paths of length $t$ in the Euclidean $d$-dimensional lattice, where each path is penalised by a factor proportional to the size of its boundary and an inverse temperature $beta$. We prove that, for all $beta>0$, the random walk condensates to a set of diameter $(t/beta)^{1/3}$ in dimension $d=2$, up to a multiplicative constant. In all dimensions $dge 3$, we also prove that the volume is bounded above by $(t/beta)^{d/(d+1)}$ and the diameter is bounded below by $(t/beta)^{1/(d+1)}$. Similar results hold for a random walk conditioned to have local time greater than $beta$ everywhere in its range when $beta$ is larger than some explicit constant, which in dimension two is the logarithm of the connective constant.



قيم البحث

اقرأ أيضاً

171 - Yueyun Hu , Nobuo Yoshida 2007
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. This model is known to exhibit a phase transition: If $d ge 3$ and the environment is not too random, then, the total population gro ws as fast as its expectation with strictly positive probability. If,on the other hand, $d le 2$, or the environment is ``random enough, then the total population grows strictly slower than its expectation almost surely. We show the equivalence between the slow population growth and a natural localization property in terms of replica overlap. We also prove a certain stronger localization property, whenever the total population grows strictly slower than its expectation almost surely.
We consider Activated Random Walks on $Z$ with totally asymmetric jumps and critical particle density, with different time scales for the progressive release of particles and the dissipation dynamics. We show that the cumulative flow of particles thr ough the origin rescales to a pure-jump self-similar process which we describe explicitly.
We consider symmetric activated random walks on $mathbb{Z}$, and show that the critical density $zeta_c$ satisfies $csqrt{lambda} leq zeta_c(lambda) leq C sqrt{lambda}$ where $lambda$ denotes the sleep rate.
We study a particular class of complex-valued random variables and their associated random walks: the complex obtuse random variables. They are the generalization to the complex case of the real-valued obtuse random variables which were introduced in cite{A-E} in order to understand the structure of normal martingales in $RR^n$.The extension to the complex case is mainly motivated by considerations from Quantum Statistical Mechanics, in particular for the seek of a characterization of those quantum baths acting as classical noises. The extension of obtuse random variables to the complex case is far from obvious and hides very interesting algebraical structures. We show that complex obtuse random variables are characterized by a 3-tensor which admits certain symmetries which we show to be the exact 3-tensor analogue of the normal character for 2-tensors (i.e. matrices), that is, a necessary and sufficient condition for being diagonalizable in some orthonormal basis. We discuss the passage to the continuous-time limit for these random walks and show that they converge in distribution to normal martingales in $CC^N$. We show that the 3-tensor associated to these normal martingales encodes their behavior, in particular the diagonalization directions of the 3-tensor indicate the directions of the space where the martingale behaves like a diffusion and those where it behaves like a Poisson process. We finally prove the convergence, in the continuous-time limit, of the corresponding multiplication operators on the canonical Fock space, with an explicit expression in terms of the associated 3-tensor again.
321 - Nobuo Yoshida 2007
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. When $d ge 3$ and the fluctuation of the environment is well moderated by the random walk, we prove a central limit theorem for the density of the population, together with upper bounds for the density of the most populated site and the replica overlap. We also discuss the phase transition of this model in connection with directed polymers in random environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا