ترغب بنشر مسار تعليمي؟ اضغط هنا

When the Higgs meets the Top: Search for t --> ch^0 at the LHC

64   0   0.0 ( 0 )
 نشر من قبل Masaya Kohda
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The newly discovered Higgs boson h^0, being lighter than the top quark t, opens up new probes for flavor and mass generation. In the general two Higgs doublet model, new ct, cc and tt Yukawa couplings could modify h^0 properties. If t --> ch^0 occurs at the percent level, the observed ZZ^* and gammagamma signal events may have accompanying cbW activity coming from tbar{t} feeddown. We suggest that t --> ch^0 can be searched for via h^0 --> ZZ^*, gammagamma, WW^* and bbar{b}, perhaps even tau^+tau^- modes in tbar{t} events. Existing data might be able to reveal some clues for t --> ch^0 signature, or push the branching ratio B(t --> ch^0) down to below the percent level.


قيم البحث

اقرأ أيضاً

62 - Xin Chen , Yue Xu , Yongcheng Wu 2019
A generic heavy Higgs has both dim-4 and effective dim-6 interactions with the Standard Model (SM) particles. The former has been the focus of LHC searches in all major Higgs production channels, just as the SM one, but with negative results so far. If the heavy Higgs is connected with Beyond Standard Model (BSM) physics at a few TeV scale, its dim-6 operators will play a very important role - they significantly enhance the Higgs momentum, and reduce the SM background in a special phase space corner to a level such that a heavy Higgs emerges, which is not possible with dim-4 operators only. We focus on the associated VH production channel, where the effect of dim-6 operators is the largest and the SM background is the lowest. Main search regions for this type of signal are identified, and substructure variables of boosted jets are employed to enhance the signal from backgrounds. The parameter space of these operators are scanned over, and expected exclusion regions with 300 fb$^{-1}$ and 3 ab$^{-1}$ LHC data are shown, if no BSM is present. The strategy given in this paper will shed light on a heavy Higgs which may be otherwise hiding in the present and future LHC data.
The littlest Higgs model with discrete symmetry named T-parity(LHT) is an interesting new physics model which does not suffer strong constraints from electroweak precision data. One of the important features of the LHT model is the existence of new s ource of FC interactions between the SM fermions and the mirror fermions. These FC interactions can make significant loop-level contributions to the couplings $tcV$, and furthermore enhance the cross sections of the FC single-top quark production processes. In this paper, we study some FC single-top quark production processes, $ppto tbar{c}$ and $ppto tV$, at the LHC in the LHT model. We find that the cross sections of these processes are strongly depended on the mirror quark masses. The processes $ppto tbar{c}$ and $ppto tg$ have large cross sections with heavy mirror quarks. The observation of these FC processes at the LHC is certainly the clue of new physics, and further precise measurements of the cross scetions can provide useful information about the free parameters in the LHT model, specially about the mirror quark masses.
67 - Henning Bahl 2021
Precision measurements of top-associated Higgs production are an important ingredient to unravel the $mathcal{CP}$ nature of the Higgs boson. In this work, we constraint the $mathcal{CP}$ nature of the top-Yukawa coupling taking into account all rele vant inclusive and differential Higgs boson measurements. Based upon this fit, we show that it is crucial to disentangle single- and di-top-associated Higgs production for tightening indirect constraints on a $mathcal{CP}$-odd top-Yukawa coupling in the future. In this context, we propose an analysis strategy for measuring $tH$ production at the HL-LHC without relying on assumptions about the Higgs $mathcal{CP}$ character.
66 - Henning Bahl 2021
The precise determination of the Higgs boson CP properties is among the most important goals for existing and future colliders. In this work, we evaluate existing constraints on the CP nature of the Higgs interaction with top quarks taking into accou nt all relevant inclusive and differential Higgs boson measurements. We study the model dependence of these constraints by allowing for deviations from the SM predictions also in the Higgs couplings to massive vector boson, photons, and gluons. Additionally, we evaluate the future prospects for constraining the CP nature of the top-Yukawa coupling by total rate measurements. In this context, we propose an analysis strategy for measuring tH production at the HL-LHC without relying on assumptions about the Higgs CP character.
A precise measurement of the top quark mass, a fundamental parameter of the Standard Model, is among the most important goals of top quark studies at the Large Hadron Collider. Apart from the standard methods, numerous new observables and reconstruct ion techniques are employed to improve the overall precision and to provide different sensitivities to various systematic uncertainties. Recently, the normalised inverse invariant mass distribution of the $tbar{t}$ system and the leading extra jet not coming from the top quark decays has been proposed for the $pp to tbar{t}j$ production process, denoted as ${cal R}(m_t^{pole},rho_s)$. In this paper, a thorough study of different theoretical predictions for this observable, however, with top quark decays included, is carried out. We focus on fixed order NLO QCD calculations for the di-lepton top quark decay channel at the LHC with $sqrt{s}=13$ TeV. First, the impact on the extraction of $m_t$ is investigated and afterwards the associated uncertainties are quantified. In one approach we include all interferences, off-shell effects and non-resonant backgrounds. This is contrasted with a different approach with top quark decays in the narrow width approximation. In the latter case, two cases are employed: NLO QCD corrections to the $ppto tbar{t}j$ production process with leading order decays and the more sophisticated case with QCD corrections and jet radiation present also in top quark decays. The top quark mass sensitivity of ${cal R}(m_t^{pole},rho_s)$ is investigated and compared to other observables: the invariant mass of the top anti-top pair, the minimal invariant mass of the $b$-jet and a charged lepton as well as the total transverse momentum of the $tbar{t}j$ system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا