ترغب بنشر مسار تعليمي؟ اضغط هنا

Indirect CP probes of the Higgs--top-quark interaction at the LHC

67   0   0.0 ( 0 )
 نشر من قبل Henning Bahl
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Henning Bahl




اسأل ChatGPT حول البحث

The precise determination of the Higgs boson CP properties is among the most important goals for existing and future colliders. In this work, we evaluate existing constraints on the CP nature of the Higgs interaction with top quarks taking into account all relevant inclusive and differential Higgs boson measurements. We study the model dependence of these constraints by allowing for deviations from the SM predictions also in the Higgs couplings to massive vector boson, photons, and gluons. Additionally, we evaluate the future prospects for constraining the CP nature of the top-Yukawa coupling by total rate measurements. In this context, we propose an analysis strategy for measuring tH production at the HL-LHC without relying on assumptions about the Higgs CP character.

قيم البحث

اقرأ أيضاً

The $mathcal{CP}$ structure of the Higgs boson in its coupling to the particles of the Standard Model is amongst the most important Higgs boson properties which have not yet been constrained with high precision. In this study, all relevant inclusive and differential Higgs boson measurements from the ATLAS and CMS experiments are used to constrain the $mathcal{CP}$-nature of the top-Yukawa interaction. The model dependence of the constraints is studied by successively allowing for new physics contributions to the couplings of the Higgs boson to massive vector bosons, to photons, and to gluons. In the most general case, we find that the current data still permits a significant $mathcal{CP}$-odd component in the top-Yukawa coupling. Furthermore, we explore the prospects to further constrain the $mathcal{CP}$ properties of this coupling with future LHC data by determining $tH$ production rates independently from possible accompanying variations of the $tbar t H$ rate. This is achieved via a careful selection of discriminating observables. At the HL-LHC, we find that evidence for $tH$ production at the Standard Model rate can be achieved in the Higgs to diphoton decay channel alone.
We study the T odd correlations induced by CP violating anomalous top-quark couplings at both production and decay level in the process gg --> t t_bar --> (b mu+ nu_mu) (b_bar mu- nu_mu_bar). We consider several counting asymmetries at the parton lev el and find the ones with the most sensitivity to each of these anomalous couplings at the LHC.
We study the charged Higgs production at LHC via its associated production with top quark. The kinematic cuts are optimized to suppress the background processes so that the reconstruction of the charged Higgs and top quark is possible. The angular di stributions with respect to top quark spin are explored to study the $Htb$ interaction at LHC.
123 - Jorgen Dhondt 2007
The Large Hadron Collider (LHC) is expected to provide proton-proton collisions at a centre-of-mass energy of 14 TeV, yielding millions of of top quark events. The top-physics potential of the two general purpose experiments, ATLAS and CMS, is discus sed according to state-of-the-art simulation of both physics and detectors. An overview is given of the most important results with emphasis on the expected improvements in our understanding of physics connected to the top quark.
We present a detailed study of Higgs boson production in association with a single top quark at the LHC, at next-to-leading order accuracy in QCD. We consider total and differential cross sections, at the parton level as well as by matching short dis tance events to parton showers, for both t-channel and s-channel production. We provide predictions relevant for the LHC at 13 TeV together with a thorough evaluation of the residual uncertainties coming from scale variation, parton distributions, strong coupling constant and heavy quark masses. In addition, for t-channel production, we compare results as obtained in the 4-flavour and 5-flavour schemes, pinning down the most relevant differences between them. Finally, we study the sensitivity to a non-standard-model relative phase between the Higgs couplings to the top quark and to the weak bosons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا