ﻻ يوجد ملخص باللغة العربية
We present experimental data on a one-dimensional superconducting metamaterial that is tunable over a broad frequency band. The basic building block of this magnetic thin-film medium is a single-junction (rf-) superconducting quantum interference device (SQUID). Due to the nonlinear inductance of such an element, its resonance frequency is tunable in situ by applying a dc magnetic field. We demonstrate that this results in tunable effective parameters of our metamaterial consisting of 54 SQUIDs. In order to obtain the effective magnetic permeability from the measured data, we employ a technique that uses only the complex transmission coefficient S21.
We report on highly tunable radio frequency (rf) characteristics of a low-loss and compact three dimensional (3D) metamaterial made of superconducting thin film spiral resonators. The rf transmission spectrum of a single element of the metamaterial s
In this paper we consider a two-dimensional metamaterial comprising an array of qubits (two level quantum objects). Here we show that a two-dimensional quantum metamaterial may be controlled, e.g. via the application of a magnetic flux, so as to prov
Electromagnetic pulse propagation in a quantum metamaterial - artificial, globally quantum coherent optical medium - is numerically simulated. We show that for the quantum metamaterials based on superconducting quantum bits, initialized in an easily
The magnetic response of a K2Cr3As3 sample has been studied by means of dc magnetization measurements as a function of magnetic field (H) at different temperatures ranging from 5 K up to 300 K. Looking at the magnetic hysteresis loops m(H), a diamagn
Correlations in systems with spin degree of freedom are at the heart of fundamental phenomena, ranging from magnetism to superconductivity. The effects of correlations depend strongly on dimensionality, a striking example being one-dimensional (1D) e