ﻻ يوجد ملخص باللغة العربية
Electromagnetic pulse propagation in a quantum metamaterial - artificial, globally quantum coherent optical medium - is numerically simulated. We show that for the quantum metamaterials based on superconducting quantum bits, initialized in an easily reachable factorized state, lasing in microwave range is triggered, accompanied by the chaotization of qubit states and generation of higher harmonics. These effects may provide a tool for characterization and optimization of quantum metamaterial prototypes.
The classification of topological states of matter in terms of unitary symmetries and dimensionality predicts the existence of nontrivial topological states even in zero-dimensional systems, i.e., a system with a discrete energy spectrum. Here, we sh
It has recently become possible to encode the quantum state of superconducting qubits and the position of nanomechanical oscillators into the states of microwave fields. However, to make an ideal measurement of the state of a qubit, or to detect the
We study a periodic arrangement of magnetic regions in a one-dimensional superconducting wire. Due to the local exchange field, each region supports Andreev bound states that hybridize forming Bloch bands in the subgap spectrum of what we call the An
When an electron or hole is in a conduction band of a crystal, it can be very different from 2, depending upon the crystalline anisotropy and the direction of the applied magnetic induction ${bf B}$. In fact, it can even be 0! To demonstrate this qua
Coupling Majorana fermion excitations to coherent external fields is an important stage towards their manipulation and detection. We analyse the charge and transmon regimes of a topological nano-wire embedded within a Cooper-Pair-Box, where the super