ترغب بنشر مسار تعليمي؟ اضغط هنا

Bogoliubov excitation spectrum of an elongated condensate from quasi-one-dimensional to three-dimensional transition

49   0   0.0 ( 0 )
 نشر من قبل Tao Yang
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quasiparticle excitation spectra of a Bose gas trapped in a highly anisotropic trap is studied with respect to varying total number of particles by numerically solving the effective one-dimensional (1D) Gross-Pitaevskii (GP) equation proposed recently by Mateo textit{et al.}. We obtain the static properties and Bogoliubov spectra of the system in the high energy domain. This method is computationally efficient and highly accurate for a condensate system undergoing a 1D to three-dimensional (3D) cigar-shaped transition, as is shown through a comparison our results with both those calculated by the 3D-GP equation and analytical results obtained in limiting cases. We identify the applicable parameter space for the effective 1D-GP equation and find that this equation fails to describe a system with large number of atoms. We also identify that the description of the transition from 1D Bose-Einstein condensate (BEC) to 3D cigar-shaped BEC using this equation is not smooth, which highlights the fact that for a finite value of $a_perp/a_s$ the junction between the 1D and 3D crossover is not perfect.

قيم البحث

اقرأ أيضاً

We present a theory for the emergence of a supersolid state in a cigar-shaped dipolar quantum Bose gas. Our approach is based on a reduced three-dimensional (3D) theory, where the condensate wavefunction is decomposed into an axial field and a transv erse part described variationally. This provides an accurate fully 3D description that is specific to the regime of current experiments and efficient to compute. We apply this theory to understand the phase diagram for a gas in an infinite tube potential. We find that the supersolid transition has continuous and discontinuous regions as the averaged density varies. We develop two simplified analytic models to characterize the phase diagram and elucidate the roles of quantum droplets and of the roton excitation.
141 - Ofir E. Alon 2021
The variance of the position operator is associated with how wide or narrow a wave-packet is, the momentum variance is similarly correlated with the size of a wave-packet in momentum space, and the angular-momentum variance quantifies to what extent a wave-packet is non-spherically symmetric. We examine an interacting three-dimensional trapped Bose-Einstein condensate at the limit of an infinite number of particles, and investigate its position, momentum, and angular-momentum anisotropies. Computing the variances of the three Cartesian components of the position, momentum, and angular-momentum operators we present simple scenarios where the anisotropy of a Bose-Einstein condensate is different at the many-body and mean-field levels of theory, despite having the same many-body and mean-field densities per particle. This suggests a way to classify correlations via the morphology of 100% condensed bosons in a three-dimensional trap at the limit of an infinite number of particles. Implications are briefly discussed.
In this letter we consider dipolar quantum gases in a quasi-one-dimensional tube with dipole moment perpendicular to the tube direction. We deduce the effective one-dimensional interaction potential and show that this potential is not purely repulsiv e, but rather has an attractive part due to high-order scattering processes through transverse excited states. The attractive part can induce bound state and cause scattering resonances. This represents the dipole induced resonance in low-dimension. We work out an unconventional behavior of low-energy phase shift for this effective potential and show how it evolves across a resonance. Based on the phase shift, the interaction energy of spinless bosons is obtained using asymptotic Bethe ansatz. Despite of long-range nature of dipolar interaction, we find that a behavior similar as short-range Lieb-Linger gas emerges at the resonance regime.
98 - Mingyuan He , Qi Zhou 2021
The length scale separation in dilute quantum gases in quasi-one- or quasi-two-dimensional traps has spatially divided the system into two different regimes. Whereas universal relations defined in strictly one or two dimensions apply in a scale that is much larger than the characteristic length of the transverse confinements, physical observables in the short distances are inevitably governed by three-dimensional contacts. Here, we show that $p$-wave contacts defined in different length scales are intrinsically connected by a universal relation, which depends on a simple geometric factor of the transverse confinements. While this universal relation is derived for one of the $p$-wave contacts, it establishes a concrete example of how dimensional crossover interplays with contacts and universal relations for arbitrary partial wave scatterings.
Motivated by recent experiments, we calculate particle emission from a Bose-Einstein condensate trapped in a single deep well of a one-dimensional lattice when the interaction strength is modulated. In addition to pair emission, which has been widely studied, we observe single-particle emission. Within linear response, we are able to write closed-form expressions for the single-particle emission rates and reduce the pair emission rates to one-dimensional integrals. The full nonlinear theory of single-particle emission is reduced to a single variable integrodifferential equation, which we numerically solve.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا