ترغب بنشر مسار تعليمي؟ اضغط هنا

Dissipative Quantum Transport in Macromolecules: An Effective Field Theory Approach

97   0   0.0 ( 0 )
 نشر من قبل Pietro Faccioli
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce an atomistic approach to the dissipative quantum dynamics of charged or neutral excitations propagating through macromolecular systems. Using the Feynman-Vernon path integral formalism, we analytically trace out from the density matrix the atomic coordinates and the heat bath degrees of freedom. This way we obtain an effective field theory which describes the real-time evolution of the quantum excitation and is fully consistent with the fluctuation-dissipation relation. The main advantage of the field-theoretic approach is that it allows to avoid using the Keldysh contour formulation. This simplification makes it straightforward to derive Feynman diagrams to analytically compute the effects of the interaction of the propagating quantum excitation with the heat bath and with the molecular atomic vibrations. For illustration purposes, we apply this formalism to investigate the loss of quantum coherence of holes propagating through a poly(3-alkylthiophene) polymer

قيم البحث

اقرأ أيضاً

In this paper, we show how the method of field theoretical renormalization group may be used to analyze universal shape properties of long polymer chains in porous environment. So far such analytical calculations were primarily focussed on the scalin g exponents that govern conformational properties of polymer macromolecules. However, there are other observables that along with the scaling exponents are universal (i.e. independent of the chemical structure of macromolecules and of the solvent) and may be analyzed within the renormalization group approach. Here, we address the question of shape which is acquired by the long flexible polymer macromolecule when it is immersed in a solvent in the presence of a porous environment. This question is of relevance for understanding of the behavior of macromolecules in colloidal solutions, near microporous membranes, and in cellular environment. To this end, we consider a previously suggested model of polymers in d-dimensions [V. Blavatska, C. von Ferber, Yu. Holovatch, Phys. Rev. E, 2001, 64, 041102] in an environment with structural obstacles, characterized by a pair correlation function h(r), that decays with distance r according to a power law: h(r) sim r-a. We apply the field-theoretical renormalization group approach and estimate the size ratio <R_e^2>/<R_G^2 > and the asphericity ratio hat{A}_d up to the first order of a double epsilon=4-d, delta=4-a expansion.
We review the construction of a low-energy effective field theory and its state space for abelian quantum Hall fluids. The scaling limit of the incompressible fluid is described by a Chern-Simons theory in 2+1 dimensions on a manifold with boundary. In such a field theory, gauge invariance implies the presence of anomalous chiral modes localized on the edge of the sample. We assume a simple boundary structure, i.e., the absence of a reconstructed edge. For the bulk, we consider a multiply connected planar geometry. We study tunneling processes between two boundary components of the fluid and calculate the tunneling current to lowest order in perturbation theory as a function of dc bias voltage. Particular attention is paid to the special cases when the edge modes propagate at the same speed, and when they exhibit two significantly distinct propagation speeds. We distinguish between two geometries of interference contours corresponding to the (electronic) Fabry-Perot and Mach-Zehnder interferometers, respectively. We find that the interference term in the current is absent when exactly one hole in the fluid corresponding to one of the two edge components involved in the tunneling processes lies inside the interference contour (i.e., in the case of a Mach-Zehnder interferometer). We analyze the dependence of the tunneling current on the state of the quantum Hall fluid and on the external magnetic flux through the sample.
In this work we investigate the interaction between spin-zero and spin-one monopoles by making use of an effective field theory based on two-body and four-body interaction parts. In particular, we analyze the formation of bound state of monopole-anti monopole (i.e. monopolium). The magnetic-charge conjugation symmetry is studied in analogy to the usual charge conjugation to define a particle basis, for which we find bound-state solutions with relatively small binding energies and which allows us to identify the bounds on the parameters in the effective Lagrangians. Estimations of their masses, binding energies and scattering lengths are performed as functions of monopole masses and interaction strength in a specific renormalization scheme. We also examine the general validity of the approach and the feasibility of detecting the monopolium.
The resonant-level model represents a paradigmatic quantum system which serves as a basis for many other quantum impurity models. We provide a comprehensive analysis of the non-equilibrium transport near a quantum phase transition in a spinless dissi pative resonant-level model, extending earlier work [Phys. Rev. Lett. 102, 216803 (2009)]. A detailed derivation of a rigorous mapping of our system onto an effective Kondo model is presented. A controlled energy-dependent renormalization group approach is applied to compute the non-equilibrium current in the presence of a finite bias voltage V. In the linear response regime V ->0, the system exhibits as a function of the dissipative strength a localized-delocalized quantum transition of the Kosterlitz-Thouless (KT) type. We address fundamental issues of the non-equilibrium transport near the quantum phase transition: Does the bias voltage play the same role as temperature to smear out the transition? What is the scaling of the non-equilibrium conductance near the transition? At finite temperatures, we show that the conductance follows the equilibrium scaling for V< T, while it obeys a distinct non-equilibrium profile for V>T. We furthermore provide new signatures of the transition in the finite-frequency current noise and AC conductance via the recently developed Functional Renormalization Group (FRG) approach. The generalization of our analysis to non-equilibrium transport through a resonant level coupled to two chiral Luttinger-liquid leads, generated by the fractional quantum Hall edge states, is discussed. Our work on dissipative resonant level has direct relevance to the experiments in a quantum dot coupled to resistive environment, such as H. Mebrahtu et al., Nature 488, 61, (2012).
We study theoretically the transport through a single impurity in a one-channel Luttinger liquid coupled to a dissipative (ohmic) bath . For non-zero dissipation $eta$ the weak link is always a relevant perturbation which suppresses transport strongl y. At zero temperature the current voltage relation of the link is $Isim exp(-E_0/eV)$ where $E_0simeta/kappa$ and $kappa$ denotes the compressibility. At non-zero temperature $T$ the linear conductance is proportional to $exp(-sqrt{{cal C}E_0/k_BT})$. The decay of Friedel oscillation saturates for distance larger than $L_{eta}sim 1/eta $ from the impurity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا