ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing Curvature Effects in the Fermi GRB 110920

70   0   0.0 ( 0 )
 نشر من قبل Eda Sonbas
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Curvature effects in Gamma-ray bursts (GRBs) have long been a source of considerable interest. In a collimated relativistic GRB jet, photons that are off-axis relative to the observer arrive at later times than on-axis photons and are also expected to be spectrally softer. In this work, we invoke a relatively simple kinematic two-shell collision model for a uniform jet profile and compare its predictions to GRB prompt-emission data for observations that have been attributed to curvature effects such as the peak-flux--peak-frequency relation, i.e., the relation between the $ u$F$_ u$ flux and the spectral peak, E$_{pk}$ in the decay phase of a GRB pulse, and spectral lags. In addition, we explore the behavior of pulse widths with energy. We present the case of the single-pulse Fermi GRB 110920, as a test for the predictions of the model against observations.

قيم البحث

اقرأ أيضاً

Radiation from GRBs in the prompt phase, flares and an afterglow is thought to be produced by accelerated electrons in magnetic fields. Such emission may be produced at collisionless shocks of baryonic outflows or at reconnection sites (at least for the prompt and flares) of the magnetically dominated (Poynting flux driven) outflows, where no shocks presumably form at all. An astonishing recent discovery is that during reconnection strong small-scale magnetic fields are produced via the Weibel instability, very much like they are produced at relativistic shocks. The relevant physics has been successfully and extensively studied with the PIC simulations in 2D and, to some extent, in 3D for the past few years. We discuss how these simulations predict the existence of MeV-range synchrotron/jitter emission in some GRBs, which can be observed with Fermi. Recent results on modeling of the spectral variability and spectral correlations of the GRB prompt emission in the Weibel-jitter paradigm applicable to both baryonic and magnetic-dominated outflows is reviewed with the emphasis on observational predictions.
We present an analysis of more than 11 years of Fermi-GBM data in which 217 Gamma-Ray Bursts (GRBs) are found for which their main burst is preceded by a precursor flash. We find that short GRBs ($<$2 s) are ~10 times less likely to produce a precurs or than long GRBs. The quiescent time profile is well described by a double Gaussian distribution, indicating that the observed precursors have two distinct physical progenitors. The light curves of the identified precursor GRBs are publicly available in an online catalog (https://icecube.wisc.edu/~grbweb_public/Precursors.html).
118 - M.E. Ravasio 2017
We present time resolved spectral analysis of prompt emission from GRB 160625B, one of the brightest bursts ever detected by Fermi in its nine years of operations. Standard empirical functions fail to provide an acceptable fit to the GBM spectral dat a, which instead require the addition of a low-energy break to the fitting function. We introduce a new fitting function, called 2SBPL, consisting of three smoothly connected power laws. Fitting this model to the data, the goodness of the fits significantly improves and the spectral parameters are well constrained. We also test a spectral model that combines non-thermal and thermal (black body) components, but find that the 2SBPL model is systematically favoured. The spectral evolution shows that the spectral break is located around $E_{rm break}sim$ 100 keV, while the usual $ u F_{ u}$ peak energy feature $E_{rm peak}$ evolves in the 0.5-6 MeV energy range. The slopes below and above $E_{rm break}$ are consistent with the values -0.67 and -1.5, respectively, expected from synchrotron emission produced by a relativistic electron population with a low energy cut-off. If $E_{rm break}$ is interpreted as the synchrotron cooling frequency, the implied magnetic field in the emitting region is $sim$ 10 Gauss, i.e. orders of magnitudes smaller than the value expected for a dissipation region located at $sim 10^{13-14}$ cm from the central engine. The low ratio between $E_{rm peak}$ and $E_{rm break}$ implies that the radiative cooling is incomplete, contrary to what is expected in strongly magnetized and compact emitting regions.
The LAT instrument on the Fermi mission will reveal the rich spectral and temporal gamma-ray burst phenomena in the > 100 MeV band. The synergy with Fermis GBM detectors will link these observations to those in the well explored 10-1000 keV range; th e addition of the > 100 MeV band observations will resolve theoretical uncertainties about burst emission in both the prompt and afterglow phases. Trigger algorithms will be applied to the LAT data both onboard the spacecraft and on the ground. The sensitivity of these triggers will differ because of the available computing resources onboard and on the ground. Here we present the LATs burst detection methodologies and the instruments GRB capabilities.
From the launch of the Fermi Gamma-ray Space Telescope to July 9, 2010, the Gamma-ray Burst Monitor (GBM) has detected 497 probable GRB events. Twenty-two of these satisfy the simultaneous requirements of an estimated burst direction within 52^circ o f the Fermi Large Area Telescope (LAT) boresight and a low energy fluence exceeding 5 $mu$erg/cm^2. Using matched filter techniques, the spatially correlated Fermi/LAT photon data above 100 MeV have been examined for evidence of bursts that have so far evaded detection at these energies. High energy emission is detected with great confidence for one event, GRB 090228A. Since the LAT has significantly better angular resolution than the GBM, real-time application of these methods could open the door to optical identification and richer characterization of a larger fraction of the relatively rare GRBs that include high energy emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا