ترغب بنشر مسار تعليمي؟ اضغط هنا

Identification of GRB precursors in Fermi-GBM bursts

194   0   0.0 ( 0 )
 نشر من قبل Paul Coppin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis of more than 11 years of Fermi-GBM data in which 217 Gamma-Ray Bursts (GRBs) are found for which their main burst is preceded by a precursor flash. We find that short GRBs ($<$2 s) are ~10 times less likely to produce a precursor than long GRBs. The quiescent time profile is well described by a double Gaussian distribution, indicating that the observed precursors have two distinct physical progenitors. The light curves of the identified precursor GRBs are publicly available in an online catalog (https://icecube.wisc.edu/~grbweb_public/Precursors.html).

قيم البحث

اقرأ أيضاً

We present our temporal and spectral analyses of 29 bursts from SGR J0501+4516, detected with the Gamma-ray Burst Monitor onboard the Fermi Gamma-ray Space Telescope during the 13 days of the source activation in 2008 (August 22 to September 3). We f ind that the T90 durations of the bursts can be fit with a log-normal distribution with a mean value of ~ 123 ms. We also estimate for the first time event durations of Soft Gamma Repeater (SGR) bursts in photon space (i.e., using their deconvolved spectra) and find that these are very similar to the T90s estimated in count space (following a log-normal distribution with a mean value of ~ 124 ms). We fit the time-integrated spectra for each burst and the time-resolved spectra of the five brightest bursts with several models. We find that a single power law with an exponential cutoff model fits all 29 bursts well, while 18 of the events can also be fit with two black body functions. We expand on the physical interpretation of these two models and we compare their parameters and discuss their evolution. We show that the time-integrated and time-resolved spectra reveal that Epeak decreases with energy flux (and fluence) to a minimum of ~30 keV at F=8.7e-6 erg/cm2/s, increasing steadily afterwards. Two more sources exhibit a similar trend: SGRs J1550-5418 and 1806-20. The isotropic luminosity corresponding to these flux values is roughly similar for all sources (0.4-1.5 e40 erg/s).
The Fermi GBM catalog provides a large database with many measured variables that can be used to explore and verify gamma-ray burst classification results. We have used Principal Component Analysis and statistical clustering techniques to look for cl ustering in a sample of 801 gamma-ray bursts described by sixteen classification variables. The analysis recovers what appears to be the Short class and two long-duration classes that differ from one another via peak flux, with negligible variations in fluence, duration and spectral hardness. Neither class has properties entirely consistent with the Intermediate GRB class. Spectral hardness has been a critical Intermediate class property. Rather than providing spectral hardness, Fermi GBM provides a range of fitting variables for four different spectral models; it is not intuitive how these variables can be used to support or disprove previous GRB classification results.
99 - G. Ghirlanda 2010
We study the spectral evolution of 13 short duration Gamma Ray Bursts (GRBs) detected by the Gamma Burst Monitor (GBM) on board Fermi. We study spectra resolved in time at the level of 2-512 ms in the 8 keV-35 MeV energy range. We find a strong corre lation between the observed peak energy Ep and the flux P within individual short GRBs. The slope of the Ep P^s correlation for individual bursts ranges between ~0.4 and ~1. There is no correlation between the low energy spectral index and the peak energy or the flux. Our results show that in our 13 short GRBs Ep evolves in time tracking the flux. This behavior is similar to what found in the population of long GRBs and it is in agreement with the evidence that long GRBs and (the still few) short GRBs with measured redshifts follow the same rest frame Ep-Liso correlation. Its origin is most likely to be found in the radiative mechanism that has to be the same in both classes of GRBs.
We present a search for gamma-ray bursts in the Fermi-GBM 10 year catalog that show similar characteristics to GRB 170817A, the first electromagnetic counterpart to a GRB identified as a binary neutron star (BNS) merger via gravitational wave observa tions. Our search is focused on a non-thermal pulse, followed by a thermal component, as observed for GRB 170817A. We employ search methods based on the measured catalog parameters and Bayesian Block analysis. Our multi-pronged approach, which includes examination of the localization and spectral properties of the thermal component, yields a total of 13 candidates, including GRB 170817A and the previously reported similar burst, GRB 150101B. The similarity of the candidates is likely caused by the same processes that shaped the gamma-ray signal of GRB 170817A, thus providing evidence of a nearby sample of short GRBs resulting from BNS merger events. Some of the newly identfied counterparts were observed by other space telescopes and ground observatories, but none of them have a measured redshift. We present an analysis of this sub-sample, and we discuss two models. From uncovering 13 candidates during a time period of ten years we predict that Fermi-GBM will trigger on-board on about one burst similar to GRB 170817A per year.
The Fermi Gamma-ray Burst Monitor (GBM) is currently the most prolific detector of Gamma-Ray Bursts (GRBs). Recently the detection rate of short GRBs (SGRBs) has been dramatically increased through the use of ground-based searches that analyze GBM co ntinuous time tagged event (CTTE) data. Here we examine the efficiency of a method developed to search CTTE data for sub-threshold transient events in temporal coincidence with LIGO/Virgo compact binary coalescence triggers. This targeted search operates by coherently combining data from all 14 GBM detectors by taking into account the complex spatial and energy dependent response of each detector. We use the method to examine a sample of SGRBs that were independently detected by the Burst Alert Telescope on board the Neil Gehrels Swift Observatory, but which were too intrinsically weak or viewed with unfavorable instrument geometry to initiate an on-board trigger of GBM. We find that the search can successfully recover a majority of the BAT detected sample in the CTTE data. We show that the targeted search of CTTE data will be crucial in increasing the GBM sensitivity, and hence the gamma-ray horizon, to weak events such as GRB 170817A. We also examine the properties of the GBM signal possibly associated with the LIGO detection of GW150914 and show that it is consistent with the observed properties of other sub-threshold SGRBs in our sample. We find that the targeted search is capable of recovering true astrophysical signals as weak as the signal associated with GW150914 in the untriggered data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا