ترغب بنشر مسار تعليمي؟ اضغط هنا

Composition of Low Redshift Halo Gas

50   0   0.0 ( 0 )
 نشر من قبل Renyue Cen
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Renyue Cen




اسأل ChatGPT حول البحث

Halo gas in low-z (z<0.5) >0.1L* galaxies in high-resolution, large-scale cosmological hydrodynamic simulations is examined with respect to three components: (cold, warm, hot) with temperatures equal to (<10^5, 10^{5-6}, >10^6)K, respectively. The warm component is compared, utilizing O VI lambdalambda 1032, 1038 absorption lines, to observations and agreement is found with respect to the galaxy-O VI line correlation, the ratio of O VI line incidence rate in blue to red galaxies and the amount of O VI mass in star-forming galaxies. A detailed account of the sources of warm halo gas (stellar feedback heating, gravitational shock heating and accretion from the intergalactic medium), inflowing and outflowing warm halo gas metallicity disparities and their dependencies on galaxy types and environment is also presented. Having the warm component securely anchored, our simulations make the following additional predictions. First, cold gas is the primary component in inner regions, with its mass comprising 50% of all gas within galacto-centric radius r=(30,150)kpc in (red, blue) galaxies. Second, at r>(30,200)kpc in (red, blue) galaxies the hot component becomes the majority. Third, the warm component is a perpetual minority, with its contribution peaking at ~30% at r=100-300kpc in blue galaxies and never exceeding 5% in red galaxies. The significant amount of cold gas in low-z early-type galaxies found in simulations, in agreement with recent observations (Thom et al.), is intriguing, so is the dominance of hot gas at large radii in blue galaxies.



قيم البحث

اقرأ أيضاً

A very large dynamic range with simultaneous capture of both large- and small-scales in the simulations of cosmic structures is required for correct modelling of many cosmological phenomena, particularly at high redshift. This is not always available , or when it is, it makes such simulations very expensive. We present a novel sub-grid method for modelling low-mass ($10^5,M_odotleq M_{rm halo}leq 10^9,M_odot$) haloes, which are otherwise unresolved in large-volume cosmological simulations limited in numerical resolution. In addition to the deterministic halo bias that captures the average property, we model its stochasticity that is correlated in time. We find that the instantaneous binned distribution of the number of haloes is well approximated by a log-normal distribution, with overall amplitude modulated by this temporal correlation bias. The robustness of our new scheme is tested against various statistical measures, and we find that temporally correlated stochasticity generates mock halo data that is significantly more reliable than that from temporally uncorrelated stochasticity. Our method can be applied for simulating processes that depend on both the small- and large-scale structures, especially for those that are sensitive to the evolution history of structure formation such as the process of cosmic reionization. As a sample application, we generate a mock distribution of medium-mass ($ 10^{8} leq M/M_{odot} leq 10^{9}$) haloes inside a 500 Mpc$,h^{-1}$, $300^3$ grid simulation box. This mock halo catalogue bears a reasonable statistical agreement with a halo catalogue from numerically-resolved haloes in a smaller box, and therefore will allow a very self-consistent sets of cosmic reionization simulations in a box large enough to generate statistically reliable data.
194 - Hsiao-Wen Chen 2013
Absorption-line spectroscopy of multiply-lensed QSOs near a known foreground galaxy provides a unique opportunity to go beyond the traditional one-dimensional application of QSO probes and establish a crude three-dimensional (3D) map of halo gas arou nd the galaxy that records the line-of-sight velocity field at different locations in the gaseous halo. Two intermediate-redshift galaxies are targeted in the field around the quadruply-lensed QSO HE0435-1223 at redshift z=1.689, and absorption spectroscopy along each of the lensed QSOs is carried out in the vicinities of these galaxies. One galaxy is a typical, star-forming L* galaxy at z=0.4188 and projected distance of rho=50 kpc from the lensing galaxy. The other is a super-L* barred spiral at z=0.7818 and rho=33 kpc. Combining known orientations of the quadruply-lensed QSO to the two foreground galaxies with the observed MgII absorption profiles along individual QSO sightlines has for the first time led to spatially resolved kinematics of tenuous halo gas on scales of 5-10 kpc at z>0.2. A MgII absorber is detected in every sightline observed through the halos of the two galaxies, and the recorded absorber strength is typical of what is seen in previous close QSO--galaxy pair studies. While the multi-sightline study confirms the unity covering fraction of MgII absorbing gas at rho < 50 kpc from star-forming disks, the galaxies also present two contrasting examples of complex halo gas kinematics. Different models, including a rotating disk, collimated outflows, and gaseous streams from either accretion or tidal/ram-pressure stripping, are considered for comparisons with the absorption-line observations, and infalling streams/stripped gas of width >~ 10 kpc are found to best describe the observed gas kinematics across multiple sightlines.
We study the effect of large-scale tidal fields on internal halo properties using a set of N-body simulations. We measure significant cross-correlations between large-scale tidal fields and several non-scalar halo properties: shapes, velocity dispers ion, and angular momentum. Selection effects that couple to these non-scalar halo properties can produce anisotropic clustering even in real-space. We investigate the size of this effect and show that it can produce a non-zero quadrupole similar in size to the one generated by linear redshift-space distortions (RSD). Finally, we investigate the clustering properties of halos identified in redshift-space and find enormous deviations from the standard linear RSD model, again caused by anisotropic assembly bias. These effects could contaminate the values of cosmological parameters inferred from the observed redshift-space clustering of galaxies, groups, or 21cm emission from atomic hydrogen, if their selection depends on properties affected by halo assembly bias. We briefly discuss ways in which this effect can be measured in existing and future large-scale structure surveys.
126 - Sarah H. Miller 2013
A number of recent challenges to the standard Lambda-CDM paradigm relate to discrepancies that arise in comparing the abundance and kinematics of local dwarf galaxies with the predictions of numerical simulations. Such arguments rely heavily on the a ssumption that the local dwarf and satellite galaxies form a representative distribution in terms of their stellar-to-halo mass ratios. To address this question, we present new, deep spectroscopy using DEIMOS on Keck for 82 low mass (10^7-10^9 solar masses) star-forming galaxies at intermediate redshift (z=0.2-1). For 50 percent of these we are able to determine resolved rotation curves using nebular emission lines and thereby construct the stellar mass Tully-Fisher relation to masses as low as 10^7 solar masses. Using scaling relations determined from weak lensing data, we convert this to a stellar-to-halo mass (SHM) relation for comparison with abundance matching predictions. We find a discrepancy between the propagated predictions from simulations compared to our observations, and suggest possible reasons for this as well as future tests that will be more effective.
136 - G. G. Kacprzak 2009
We obtained ESI/Keck rotation curves of 10 MgII absorption selected galaxies (0.3 < z < 1.0) for which we have WFPC-2/HST images and high resolution HIRES/Keck and UVES/VLT quasar spectra of the MgII absorption profiles. We perform a kinematic compar ison of these galaxies and their associated halo MgII absorption. For all 10 galaxies, the majority of the absorption velocities lie in the range of the observed galaxy rotation velocities. In 7/10 cases, the absorption velocities reside fully to one side of the galaxy systemic velocity and usually align with one arm of the rotation curve. In all cases, a constant rotating thick-disk model poorly reproduces the full spread of observed MgII absorption velocities when reasonably realistic parameters are employed. In 2/10 cases, the galaxy kinematics, star formation surface densities, and absorption kinematics have a resemblance to those of high redshift galaxies showing strong outflows. We find that MgII absorption velocity spread and optical depth distribution may be dependent on galaxy inclination. To further aid in the spatial-kinematic relationships of the data, we apply quasar absorption line techniques to a galaxy (v_c=180 km/s) embedded in LCDM simulations. In the simulations, MgII absorption selects metal enriched halo gas out to roughly 100 kpc from the galaxy, tidal streams, filaments, and small satellite galaxies. Within the limitations inherent in the simulations, the majority of the simulated MgII absorption arises in the filaments and tidal streams and is infalling towards the galaxy with velocities between -200 < v_r < -180 km/s. The MgII absorption velocity offset distribution (relative to the simulated galaxy) spans ~200 km/s with the lowest frequency of detecting MgII at the galaxy systematic velocity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا