ترغب بنشر مسار تعليمي؟ اضغط هنا

Gradients of Stellar Population Properties and Evolution Clues in a Nearby Galaxy M 101

48   0   0.0 ( 0 )
 نشر من قبل Lin Lin
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi-band photometric images from ultraviolet and optical to infrared are collected to derive spatially resolved properties of a nearby Scd type galaxy M 101. With evolutionary stellar population synthesis models, two-dimensional distributions and radial profiles of age, metallicity, dust attenuation, and star formation timescale in the form of the Sandage star formation history are obtained. When fitting with the models, we use the IRX-$A_mathrm{FUV}$ relation, found to depend on a second parameter of birth rate b (ratio of present and past-averaged star formation rate), to constrain the dust attenuation. There are obvious parameter gradients in the disk of M101, which supports the theory of an inside-out disk growth scenario. Two distinct disc regions with different gradients of age and color are discovered, similar to another late-type galaxy NGC 628. The metallicity gradient of the stellar content is flatter than that of H {sc ii} regions. The stellar disk is optically thicker inside than outside and the global dust attenuation of this galaxy is lower, compared with galaxies of similar and earlier morphological type. We highlight that a variational star formation timescale describes the real star formation history of a galaxy. The timescale increases steadily from the center to the outskirt. We also confirm that the bulge in this galaxy is a disk-like pseudobulge, whose evolution is likely to be induced by some secular processes of the small bar with relatively young age, rich metal, and much dust.

قيم البحث

اقرأ أيضاً

60 - A.G. Bedregal 2011
We present absorption-line index gradients for a sample of S0 galaxies in the Fornax Cluster. The sample has been selected to span a wide range in galaxy mass, and the deep VLT-FORS2 spectroscopy allows us to explore the stellar populations all the w ay to the outer disk-dominated regions of these galaxies. We find that globally, in both bulges and disks, star formation ceased earliest in the most massive systems, as a further manifestation of downsizing. However, within many galaxies, we find an age gradient which indicates that star formation ended first in the outermost regions. Metallicity gradients, when detected, are always negative such that the galaxy centres are more metal-rich. This finding fits with a picture in which star formation continued in the central regions, with enriched material, after it had stopped in the outskirts. Age and metallicity gradients are correlated, suggesting that large differences in star formation history between the inner and outer parts of S0 galaxies yield large differences in their chemical enrichment. In agreement with previous results, we conclude that the radial variations in the stellar populations of S0 galaxies are compatible with the hypothesis that these galaxies are the descendants of spiral galaxies whose star formation has ceased. With the addition of radial gradient information, we are able to show that this shutdown of star formation occurred from the outside inward, with the later star formation in the central regions offering a plausible mechanism for enhancing the bulge light in these systems, as the transformation to more bulge-dominated S0 galaxies requires.
We present the stellar population and velocity dispersion gradients for a sample of 24 brightest cluster galaxies (BCGs) in the nearby Universe for which we have obtained high quality long-slit spectra at the Gemini telescopes. With the aim of studyi ng the possible connection between the formation of the BCGs and their host clusters, we explore the relations between the stellar population gradients and properties of the host clusters as well as the possible connections between the stellar population gradients and other properties of the galaxies. We find mean stellar population gradients (negative {Delta}[Z/H]/log r gradient of -0.285{pm}0.064; small positive {Delta}log (age)/log r gradient of 0.069{pm}0.049; and null {Delta}[E/Fe]/log r gradient of -0.008{pm}0.032) that are consistent with those of normal massive elliptical galaxies. However, we find a trend between metallicity gradients and velocity dispersion (with a negative slope of -1.616{pm}0.539) that is not found for the most massive ellipticals. Furthermore, we find trends between the metallicity gradients and K-band luminosities (with a slope of 0.173{pm}0.081) as well as the distance from the BCG to the X-ray peak of the host cluster (with a slope of -7.546{pm}2.752). The latter indicates a possible relation between the formation of the cluster and that of the central galaxy.
This is the third paper of a series where we study the stellar population gradients (SP; ages, metallicities, $alpha$-element abundance ratios and stellar initial mass functions) of early type galaxies (ETGs) at $zle 0.08$ from the MaNGA-DR15 survey. In this work we focus on the S0 population and quantify how the SP varies across the population as well as with galactocentric distance. We do this by measuring Lick indices and comparing them to stellar population synthesis models. This requires spectra with high signal-to-noise which we achieve by stacking in bins of luminosity (L$_r$) and central velocity dispersion ($sigma_0$). We find that: 1) There is a bimodality in the S0 population: S0s more massive than $3times 10^{10}M_odot$ show stronger velocity dispersion and age gradients (age and $sigma_r$ decrease outwards) but little or no metallicity gradient, while the less massive ones present relatively flat age and velocity dispersion profiles, but a significant metallicity gradient (i.e. [M/H] decreases outwards). Above $2times10^{11}M_odot$ the number of S0s drops sharply. These two mass scales are also where global scaling relations of ETGs change slope. 2) S0s have steeper velocity dispersion profiles than fast rotating elliptical galaxies (E-FRs) of the same luminosity and velocity dispersion. The kinematic profiles and stellar population gradients of E-FRs are both more similar to those of slow rotating ellipticals (E-SRs) than to S0s, suggesting that E-FRs are not simply S0s viewed face-on. 3) At fixed $sigma_0$, more luminous S0s and E-FRs are younger, more metal rich and less $alpha$-enhanced. Evidently for these galaxies, the usual statement that massive galaxies are older is not true if $sigma_0$ is held fixed.
161 - P.J.E. Peebles , Adi Nusser 2010
The great advances in the network of cosmological tests show that the relativistic Big Bang theory is a good description of our expanding universe. But the properties of nearby galaxies that can be observed in greatest detail suggest a still better t heory would more rapidly gather matter into galaxies and groups of galaxies. This happens in theoretical ideas now under discussion.
We have extracted PSF-fitted stellar photometry from near-ultraviolet, optical and near-infrared images, obtained with the Hubble Space Telescope, of the nearby (D ~ 5.5 Mpc) SBm galaxy NGC 1311. The ultraviolet and optical data reveal a population o f hot main sequence stars with ages of 2-10 Myr. We also find populations of blue supergiants with ages between 10 and 40 Myr and red supergiants with ages between 10 and 100 Myr. Our near-infrared data shows evidence of star formation going back ~1 Gyr, in agreement with previous work. Fits to isochrones indicate a metallicity of Z ~ 0.004. The ratio of blue to red supergiants is consistent with this metallicity. This indicates that NGC 1311 follows the well-known luminosity-metallicity relation for late-type dwarf galaxies. About half of the hot main sequence stars and blue supergiants are found in two regions in the inner part of NGC 1311. These two regions are each about 200 pc across, and thus have crossing times roughly equal to the 10 Myr age we find for the dominant young population. The Luminosity Functions of the supergiants indicate a slowly rising star formation rate (of 0.001 Solar masses per year) from ~100 Myr ago until ~15 Myr ago, followed by a strong enhancement (to 0.01 Solar Masses per year) at ~10 Myr ago. We see no compelling evidence for gaps in the star-forming history of NGC 1311 over the last 100 Myr, and, with lower significance, none over the last Gyr. This argues against a bursting mode, and in favor of a gasping or breathing mode for the recent star-formation history.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا