ﻻ يوجد ملخص باللغة العربية
Organic spintronic devices have been appealing because of the long spin life time of the charge carriers in the organic materials and their low cost, flexibility and chemical diversity. In previous studies, the control of resistance of organic spin valves is generally achieved by the alignment of the magnetization directions of the two ferromagnetic electrodes, generating magnetoresistance.1 Here we employ a new knob to tune the resistance of organic spin valves by adding a thin ferroelectric interfacial layer between the ferromagnetic electrode and the organic spacer. We show that the resistance can be controlled by not only the spin alignment of the two ferromagnetic electrodes, but also by the electric polarization of the interfacial ferroelectric layer: the MR of the spin valve depends strongly on the history of the bias voltage which is correlated with the polarization of the ferroelectric layer; the MR even changes sign when the electric polarization of the ferroelectric layer is reversed. This new tunability can be understood in terms of the change of relative energy level alignment between ferromagnetic electrode and the organic spacer caused by the electric dipole moment of the ferroelectric layer. These findings enable active control of resistance using both electric and magnetic fields, opening up possibility for multi-state organic spin valves and shed light on the mechanism of the spin transport in organic spin valves.
Magnetoelectric coupling has been a trending research topic in both organic and inorganic materials and hybrids. The concept of controlling magnetism using an electric field is particularly appealing in energy efficient applications. In this spirit,
The spin absorption process in a ferromagnetic material depends on the spin orientation relativelyto the magnetization. Using a ferromagnet to absorb the pure spin current created within a lateralspin-valve, we evidence and quantify a sizeable orient
A magnetic spin filter tunnel barrier, sandwiched between a non-magnetic metal and a magnetic metal, is used to create a new magnetoresistive tunnel device, somewhat analogous to an optical polarizer-analyzer configuration. The resistance of these tr
We present the analysis of the spin signals obtained in NiFe based metallic lateral spin valves. We exploit the spin dependent diffusive equations in both the conventional 1D analytic modeling as well as in 3D Finite Element Method simulations. Both
We use nanometer-sized point contacts to a Co/Cu spin valve to study the giant magnetoresistance (GMR) of only a few Co domains. The measured data show strong device-to-device differences of the GMR curve, which we attribute to the absence of averagi