ترغب بنشر مسار تعليمي؟ اضغط هنا

On inferring extinction laws in z~6 quasars as signatures of supernova dust

59   0   0.0 ( 0 )
 نشر من قبل Jens Hjorth
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Unusual extinction curves of high-redshift QSOs have been taken as evidence that dust is primarily produced by supernovae at high redshift. In particular, the 3000 A Todini-Ferrara-Maiolino kink in the extinction curve of the z = 6.20 SDSS J1048+4637 has been attributed to supernova dust. Here we discuss the challenges in inferring robust extinction curves of high-redshift QSOs and critically assess previous claims of detection of supernova dust. In particular, we address the sensitivity to the choice of intrinsic QSO spectrum, the need for a long wavelength baseline, and the drawbacks in fitting theoretical extinction curves. In a sample of 21 QSOs at z ~ 6 we detect significant ultraviolet extinction using existing broad-band optical, near-infrared, and Spitzer photometry. The median extinction curve is consistent with a Small Magellanic Cloud curve with A_1450 ~ 0.7 mag and does not exhibit any conspicuous (restframe) 2175 A or 3000 A features. For two QSOs, SDSS J1044-0125 at z = 5.78 and SDSS J1030+0524 at z = 6.31, we further present X-shooter spectra covering the wavelength range 0.9-2.5 um. The resulting non-parametric extinction curves do not exhibit the 3000 A kink. Finally, in a re-analysis of literature spectra of SDSS J1048+4637, we do not find evidence for a conspicuous kink. We conclude that the existing evidence for a 3000 A feature is weak and that the overall dust properties at high and low redshift show no significant differences. This, however, does not preclude supernovae from dominating the dust budget at high redshift.

قيم البحث

اقرأ أيضاً

We apply the supernova(SN) extinction curves to reproduce the observed properties of SST J1604+4304 which is a young infrared (IR) galaxy at z = 1. The SN extinction curves used in this work were obtained from models of unmixed ejecta of type II supe rnovae(SNe II) for the Salpeter initial mass function (IMF) with a mass range from 8 to 30 M_sun or 8 to 40 M_sun. The effect of dust distributions on the attenuation of starlight is investigated by performing the chi-square fitting method against various dust distributions. These are the commonly used uniform dust screen, the clumpy dust screen, and the internal dust geometry. We add to these geometries three scattering properties, namely, no-scattering, isotropic scattering, and forward-only scattering. Judging from the chi-square values, we find that the uniform screen models with any scattering property provide good approximations to the real dust geometry. Internal dust is inefficient to attenuate starlight and thus cannot be the dominant source of the extinction. We show that the SN extinction curves reproduce the data of SST J1604+4304 comparable to or better than the Calzetti extinction curve. The Milky Way extinction curve is not in satisfactory agreement with the data unless several dusty clumps are in the line of sight. This trend may be explained by the abundance of SN-origin dust in these galaxies; SN dust is the most abundant in the young IR galaxy at z = 1, abundant in local starbursts, and less abundant in the Galaxy. If dust in SST J1604+4304 is dominated by SN dust, the dust production rate is about 0.1 M_sun per SN.
We present Atacama Large Millimeter Array 1mm observations of the rest-frame far-infrared (FIR) dust continuum in 27 quasars at redshifts 6.0 < z < 6.7. We detect FIR emission at >3sigma in all quasar host galaxies with flux densities at ~1900GHz in the rest-frame of 0.12 < S_rest,1900GHz < 5.9mJy, with a median (mean) flux density of 0.88mJy (1.59mJy). The implied FIR luminosities range from L_FIR = (0.27-13)x10^12 L_sun, with 74% of our quasar hosts having L_FIR > 10^12 L_sun. The estimated dust masses are M_dust = 10^7-10^9 M_sun. If the dust is heated only by star formation, then the star formation rates in the quasar host galaxies are between 50 and 2700 M_sun/yr. In the framework of the host galaxy-black hole coevolution model a correlation between ongoing black hole growth and star formation in the quasar host galaxy would be expected. However, combined with results from the literature to create a luminosity-limited quasar sample, we do not find a strong correlation between quasar UV luminosity (a proxy for ongoing black hole growth) and FIR luminosity (star formation in the host galaxy). The absence of such a correlation in our data does not necessarily rule out the coevolution model, and could be due to a variety of effects (including different timescales for black hole accretion and FIR emission).
X-shooter, with its characteristics of resolution, spectral coverage and efficiency, provides a unique opportunity to obtain spectra of the highest-redshift quasars (z ~ 6) that will allow us to carry out successful investigations on key cosmological issues, from the details of the re-ionization process, to the evolution of the first galaxies and AGNs. In this paper, we present the spectra of three z ~ 6 quasars: one obtained during the commissioning of X-shooter and two in the context of our ongoing GTO programme. Combining this sample with data in the literature, we update the value of the C IV cosmic mass density in the range 4.5 < z < 5, confirming the constant trend with redshift between 2.5 and 5.
Outflows in quasars during the early epochs of galaxy evolution are an important part of the feedback mechanisms potentially affecting the evolution of the host galaxy. However, systematic observations of outflows are only now becoming possible with the advent of sensitive mm telescopes. In this study we use spectral stacking methods to search for faint high velocity outflow signal in a sample of [C II] detected, z ~ 6 quasars. We search for broad emission line signatures from high-velocity outflows for a sample of 26 z ~ 6 quasars observed with ALMA, with a detection of the [C II] line. The observed emission lines of the sources are dominated by the host galaxy, and outflow emission is not detected for the individual sources. We use a spectral line stacking analysis developed for interferometric data to search for outflow emission. We stack both extracted spectra and the full spectral cubes. We also investigate the possibility that only a sub-set of our sample contributes to the stacked outflow emission. We find only a tentative detection of a broad emission line component in the stacked spectra. When taking a region of about 2 arcsec around the source central position of the stacked cubes, the stacked line shows an excess emission due to a broad component of 1.1-1.5 sigma, but the significance drops to 0.4-0.7 sigma when stacking the extracted spectra from a smaller region. The broad component can be characterised by a line width of full width half max FWHM > 700 km/s. Furthermore, we find a sub-sample of 12 sources the stack of which maximises the broad component emission. The stack of this sub-sample shows an excess emission due to a broad component of 1.2-2.5 sigma. The stacked line of these sources has a broad component of FWHM > 775 km/s. Deeper ALMA observations are necessary to confirm the presence of a broad component in the individual spectra.
We report Herschel SPIRE (250, 350, and 500 micron) detections of 32 quasars with redshifts 0.5 < z < 3.6 from the Herschel Multi-tiered Extragalactic Survey. These sources are from a MIPS 24 micron flux-limited sample of 326 quasars in the Lockman H ole Field. The extensive multi-wavelength data available in the field permit construction of the rest-frame Spectral Energy Distributions (SEDs)from ultraviolet to the mid-infrared for all sources, and to the far-infrared (FIR) for the 32 objects. Most quasars with Herschel FIR detections show dust temperatures in the range of 25K to 60K, with a mean of 34K. The FIR luminosities range from 10^{11.3} to 10^{13.5} Lsun, qualifying most of their hosts as ultra- or hyper-luminous infrared galaxies. These FIR-detected quasars may represent a dust-rich population, but with lower redshifts and fainter luminosities than quasars observed at ~ 1 mm. However, their FIR properties cannot be predicted from shorter wavelengths (0.3--20 micron, rest-frame), and the bolometric luminosities derived using the 5100 A index may be underestimated for these FIR-detected quasars. Regardless of redshift, we observed a decline in the relative strength of FIR luminosities for quasars with higher near-infrared luminosities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا