ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical-NIR spectra of quasars close to reionization (z~ 6)

139   0   0.0 ( 0 )
 نشر من قبل Valentina D'Odorico
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

X-shooter, with its characteristics of resolution, spectral coverage and efficiency, provides a unique opportunity to obtain spectra of the highest-redshift quasars (z ~ 6) that will allow us to carry out successful investigations on key cosmological issues, from the details of the re-ionization process, to the evolution of the first galaxies and AGNs. In this paper, we present the spectra of three z ~ 6 quasars: one obtained during the commissioning of X-shooter and two in the context of our ongoing GTO programme. Combining this sample with data in the literature, we update the value of the C IV cosmic mass density in the range 4.5 < z < 5, confirming the constant trend with redshift between 2.5 and 5.

قيم البحث

اقرأ أيضاً

We present the rest-frame optical spectral properties of 155 luminous quasars at 3.3<z<6.4 taken with the AKARI space telescope, including the first detection of H$alpha$ emission line as far out as z~6. We extend the scaling relation between the res t-frame optical continuum and line luminosity of active galactic nuclei (AGNs) to the high luminosity, high redshift regime that has rarely been probed before. Remarkably, we find that a single log-linear relation can be applied to the 5100${rm AA}$ and H$alpha$ AGN luminosities over a wide range of luminosity (10$^{42}$<$L_{5100}$<10$^{47}$ergs/s) or redshift (0<z<6), suggesting that the physical mechanism governing this relation is unchanged from z=0 to 6, over five decades in luminosity. Similar scaling relations are found between the optical and the UV continuum luminosities or line widths. Applying the scaling relations to the H$beta$ black hole mass ($M_{rm BH}$) estimator of local AGNs, we derive the $M_{rm BH}$ estimators based on H$alpha$, MgII, and CIV lines, finding that the UV-line based masses are overall consistent with the Balmer-line based, but with a large intrinsic scatter of 0.40dex for the CIV estimates. Our 43 $M_{rm BH}$ estimates from H$alpha$ confirm the existence of BHs as massive as ~10$^{10}M_{odot}$ out to z~5, and provide a secure footing for previous MgII-line based studies that a rapid $M_{rm BH}$ growth has occurred in the early universe.
We present new measurements of the quasar luminosity function (LF) at $z sim 6$, over an unprecedentedly wide range of the rest-frame ultraviolet luminosity $M_{1450}$ from $-30$ to $-22$ mag. This is the fifth in a series of publications from the Su baru High-$z$ Exploration of Low-Luminosity Quasars (SHELLQs) project, which exploits the deep multi-band imaging data produced by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. The LF was calculated with a complete sample of 110 quasars at $5.7 le z le 6.5$, which includes 48 SHELLQs quasars discovered over 650 deg$^2$, and 63 brighter quasars discovered by the Sloan Digital Sky Survey and the Canada-France-Hawaii Quasar Survey (including one overlapping object). This is the largest sample of $z sim 6$ quasars with a well-defined selection function constructed to date, and has allowed us to detect significant flattening of the LF at its faint end. A double power-law function fit to the sample yields a faint-end slope $alpha = -1.23^{+0.44}_{-0.34}$, a bright-end slope $beta = -2.73^{+0.23}_{-0.31}$, a break magnitude $M_{1450}^* = -24.90^{+0.75}_{-0.90}$, and a characteristic space density $Phi^* = 10.9^{+10.0}_{-6.8}$ Gpc$^{-3}$ mag$^{-1}$. Integrating this best-fit model over the range $-18 < M_{1450} < -30$ mag, quasars emit ionizing photons at the rate of $dot{n}_{rm ion} = 10^{48.8 pm 0.1}$ s$^{-1}$ Mpc$^{-3}$ at $z = 6.0$. This is less than 10 % of the critical rate necessary to keep the intergalactic medium ionized, which indicates that quasars are not a major contributor to cosmic reionization.
76 - Yuxiang Qin 2017
Motivated by recent measurements of the number density of faint AGN at high redshift, we investigate the contribution of quasars to reionization by tracking the growth of central supermassive black holes in an update of the Meraxes semi-analytic mode l. The model is calibrated against the observed stellar mass function at $zsim0.6-7$, the black hole mass function at $zlesssim0.5$, the global ionizing emissivity at $zsim2-5$ and the Thomson scattering optical depth. The model reproduces a Magorrian relation in agreement with observations at $z<0.5$ and predicts a decreasing black hole mass towards higher redshifts at fixed total stellar mass. With the implementation of an opening angle of 80 deg for quasar radiation, corresponding to an observable fraction of ${sim}23.4$ per cent due to obscuration by dust, the model is able to reproduce the observed quasar luminosity function at $zsim0.6-6$. The stellar light from galaxies hosting faint AGN contributes a significant or dominant fraction of the UV flux. At high redshift, the model is consistent with the bright end quasar luminosity function and suggests that the recent faint $zsim4$ AGN sample compiled by Giallongo et al. (2015) includes a significant fraction of stellar light. Direct application of this luminosity function to the calculation of AGN ionizing emissivity consequently overestimates the number of ionizing photons produced by quasars by a factor of 3 at $zsim6$. We conclude that quasars are unlikely to make a significant contribution to reionization.
155 - Ian Robson 2004
We report on submillimetre observations of three high redshift (z>6) quasars, made using the SCUBA camera on the JCMT. Only one of the sample was detected at 850um-- SDSS J1148+5251 (z=6.43). It was also detected (>3 sigma significance) at 450um, one of the few z>4 quasars for which this is the case. In combination with existing millimetric data, the submm detections allow us to place limits on the temperature of the submm-emitting dust, hence on the mass of dust to be synthesized under the time constraint imposed by the quasars redshift.
The high redshift Lyman-alpha forest, in particular the Gunn-Peterson trough, is the most unambiguous signature of the neutral to ionized transition of the intergalactic medium (IGM) taking place during the Epoch of Reionization (EoR). Recent studies , e.g. Kulkarni et al. (2019a) and Keating et al. (2019), showed that reproducing the observed Lyman-alpha opacities after overlap required a non-monotonous evolution of cosmic emissivity: rising, peaking at z=6, and then decreasing onwards to z=4. Such an evolution is puzzling considering galaxy build-up and the cosmic star formation rate are still continously on the rise at these epochs. Here, we use new RAMSES-CUDATON simulations to show that such a peaked evolution may occur naturally in a fully coupled radiation-hydrodynamical framework. In our fiducial run, cosmic emissivity at z>6 is dominated by a low mass (M$_{rm DM}<2.10^9$ M$_{odot}$), high escape fraction halo population, driving reionization, up to overlap. Approaching z=6, this population is radiatively suppressed due to the rising ionizing UV background, and its emissivity drops. In the meantime, the high mass halo population builds up and its emissivity rises, but not fast enough to compensate the dimming of the low mass haloes, because of low escape fractions. The combined ionizing emissivity of these two populations therefore naturally results in a rise and fall of the cosmic emissivity, from z=12 to z=4, with a peak at z=6. An alternative run, which features higher escape fractions for the high mass haloes and later suppression at low mass, leads to overshooting the ionizing rate, over-ionizing the IGM and therefore too low Lyman-alpha opacities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا