ترغب بنشر مسار تعليمي؟ اضغط هنا

The speed of interfacial waves polarized in a symmetry plane

43   0   0.0 ( 0 )
 نشر من قبل Michel Destrade
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The surface-impedance matrix method is used to study interfacial waves polarized in a plane of symmetry of anisotropic elastic materials. Although the corresponding Stroh polynomial is a quartic, it turns out to be analytically solvable in quite a simple manner. A specific application of the result concerns the calculation of the speed of a Stoneley wave, polarized in the common symmetry plane of two rigidly bonded anisotropic solids. The corresponding algorithm is robust, easy to implement, and gives directly the speed (when the wave exists) for any orientation of the interface plane, normal to the common symmetry plane. Through the examples of the couples (Aluminum)-(Tungsten) and (Carbon/epoxy)-(Douglas pine), some general features of a Stoneley wave speed are verified: the wave does not always exist; it is faster than the slowest Rayleigh wave associated with the separated half-spaces.

قيم البحث

اقرأ أيضاً

Material surface may have a remarkable effect on the mechanical behavior of magneto-electro-elastic (or multiferroic) structures at nano-scale. In this paper, a surface magneto-electro-elasticity theory (or effective boundary condition formulation), which governs the motion of the material surface of magneto-electro-elastic nano-plates, is established by employing the state-space formalism. The properties of anti-plane shear (SH) waves propagating in a transversely isotropic magneto-electro-elastic plate with nano-thickness are investigated by taking surface effects into account. The size-dependent dispersion relations of both antisymmetric and symmetric SH waves are presented. The thickness-shear frequencies and the asymptotic characteristics of the dispersion relations considering surface effects are determined analytically as well. Numerical results show that surface effects play a very pronounced role in elastic wave propagation in magneto-electro-elastic nano-plates, and the dispersion properties depend strongly on the chosen surface material parameters of magneto-electro-elastic nano-plates. As a consequence, it is possible to modulate the waves in magneto-electro-elastic nano-plates through surface engineering.
53 - J. Schaefer 2005
The spin-selective electron reflection at a ferromagnetic-paramagnetic interface is investigated using Fe films on a W(110) substrate. Angle-resolved photoemission of the majority and minority Fermi surfaces of the Fe film is used to probe standing w ave formation. Intense quantum well states resulting from interfacial reflection are observed exclusively for majority states. Such high spin polarization is explained by the Fermi surface topology of the connecting substrate, and we argue that Fe/W is a particularly suitable interface for that purpose.
When two-dimensional crystals are brought into close proximity, their interaction results in strong reconstruction of electronic spectrum and local crystal structure. Such reconstruction strongly depends on the twist angle between the two crystals an d has received growing attention due to new interesting electronic and optical properties that arise in graphene and transitional metal dichalcogenides. Similarly, novel and potentially useful properties are expected to appear in insulating crystals. Here we study two insulating crystals of hexagonal boron nitride (hBN) stacked at a small twist angle. Using electrostatic force microscopy, we observe ferroelectric-like domains arranged in triangular superlattices with a large surface potential that is independent on the size and orientation of the domains as well as the thickness of the twisted hBN crystals. The observation is attributed to interfacial elastic deformations that result in domains with a large density of out-of-plane polarized dipoles formed by pairs of boron and nitrogen atoms belonging to the opposite interfacial surfaces. This effectively creates a bilayer-thick ferroelectric with oppositely polarized (BN and NB) dipoles in neighbouring domains, in agreement with our modelling. The demonstrated electrostatic domains and their superlattices offer many new possibilities in designing novel van der Waals heterostructures.
We consider interactions between surface and interfacial waves in the two layer system. Our approach is based on the Hamiltonian structure of the equations of motion, and includes the general procedure for diagonalization of the quadratic part of the Hamiltonian. Such diagonalization allows us to derive the interaction crossection between surface and interfacial waves and to derive the coupled kinetic equations describing spectral energy transfers in this system. Our kinetic equation allows resonant and near resonant interactions. We find that the energy transfers are dominated by the class III resonances of cite{Alam}. We apply our formalism to calculate the rate of growth for interfacial waves for different values of the wind velocity. Using our kinetic equation, we also consider the energy transfer from the wind generated surface waves to interfacial waves for the case when the spectrum of the surface waves is given by the JONSWAP spectrum and interfacial waves are initially absent. We find that such energy transfer can occur along a timescale of hours; there is a range of wind speeds for the most effective energy transfer at approximately the wind speed corresponding to white capping of the sea. Furthermore, interfacial waves oblique to the direction of the wind are also generated.
146 - Chloe Chevigny 2011
This paper presents a study of the polymer-filler interfacial effects on filler dispersion and mechanical reinforcement in Polystyrene (PS) / silica nanocomposites by direct comparison of two model systems: un-grafted and PS-grafted silica dispersed in PS matrix. The structure of nanoparticles has been investigated by combining Small Angle Neutron Scattering (SANS) measurements and Transmission Electronic Microscopic (TEM) images. The mechanical properties were studied over a wide range of deformation by plate/plate rheology and uni-axial stretching. At low silica volume fraction, the particles arrange, for both systems, in small finite size non-connected aggregates and the materials exhibit a solid-like behavior independent of the local polymer/fillers interactions suggesting that reinforcement is dominated by additional long range effects. At high silica volume fraction, a continuous connected network is created leading to a fast increase of reinforcement whose amplitude is then directly dependent on the strength of the local particle/particle interactions and lower with grafting likely due to deformation of grafted polymer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا