ﻻ يوجد ملخص باللغة العربية
We consider interactions between surface and interfacial waves in the two layer system. Our approach is based on the Hamiltonian structure of the equations of motion, and includes the general procedure for diagonalization of the quadratic part of the Hamiltonian. Such diagonalization allows us to derive the interaction crossection between surface and interfacial waves and to derive the coupled kinetic equations describing spectral energy transfers in this system. Our kinetic equation allows resonant and near resonant interactions. We find that the energy transfers are dominated by the class III resonances of cite{Alam}. We apply our formalism to calculate the rate of growth for interfacial waves for different values of the wind velocity. Using our kinetic equation, we also consider the energy transfer from the wind generated surface waves to interfacial waves for the case when the spectrum of the surface waves is given by the JONSWAP spectrum and interfacial waves are initially absent. We find that such energy transfer can occur along a timescale of hours; there is a range of wind speeds for the most effective energy transfer at approximately the wind speed corresponding to white capping of the sea. Furthermore, interfacial waves oblique to the direction of the wind are also generated.
The nonlinear dynamics of waves at the sea surface is believed to be ruled by the Weak Turbulence framework. In order to investigate the nonlinear coupling among gravity surface waves, we developed an experiment in the Coriolis facility which is a 13
We report evaluations of a resonant kinetic equation that suggest the slow time evolution of the Garrett and Munk spectrum is {em not}, in fact, slow. Instead nonlinear transfers lead to evolution time scales that are smaller than one wave period at
This progress report summarizes recent studies of electrochemical oxidation to modulate the interfacial tension of gallium-based alloys. These alloys, which are liquid at ambient conditions, have the largest interfacial tension of any liquid at room
To date, axisymmetric internal wave fields, which have relevance to atmospheric internal wave fields generated by storm cells and oceanic near-inertial wave fields generated by surface storms, have been experimentally realized using an oscillating sp
We present fluid dynamics videos of the motion of a boat on a two-layer or three-layer fluid. Under certain specific conditions, this setup generates large amplitude interfacial waves, while no surface waves are visible. The boat is slowed down leadi