ترغب بنشر مسار تعليمي؟ اضغط هنا

Planetary Nebula Spectrograph survey of S0 galaxy kinematics. II. Clues to the origins of S0 galaxies

206   0   0.0 ( 0 )
 نشر من قبل Arianna Cortesi Dr.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The stellar kinematics of the spheroids and discs of S0 galaxies contain clues to their formation histories. Unfortunately, it is difficult to disentangle the two components and to recover their stellar kinematics in the faint outer parts of the galaxies using conventional absorption line spectroscopy. This paper therefore presents the stellar kinematics of six S0 galaxies derived from observations of planetary nebulae (PNe), obtained using the Planetary Nebula Spectrograph. To separate the kinematics of the two components, we use a maximum-likelihood method that combines the discrete kinematic data with a photometric component decomposition. The results of this analysis reveal that: the discs of S0 galaxies are rotationally supported; however, the amount of random motion in these discs is systematically higher than in comparable spiral galaxies; and the S0s lie around one magnitude below the Tully--Fisher relation for spiral galaxies, while their spheroids lie nearly one magnitude above the Faber--Jackson relation for ellipticals. All of these findings are consistent with a scenario in which spirals are converted into S0s through a process of mild harassment or pestering, with their discs somewhat heated and their spheroid somewhat enhanced by the conversion process. In such a scenario, one might expect the properties of S0s to depend on environment. We do not see such an effect in this fairly small sample, although any differences would be diluted by the fact that the current location does not necessarily reflect the environment in which the transformation occurred. Similar observations of larger samples probing a broader range of environments, coupled with more detailed modelling of the transformation process to match the wide range of parameters that we have shown can now be measured, should take us from these first steps to the definitive answer as to how S0 galaxies form.



قيم البحث

اقرأ أيضاً

The origins of S0 galaxies remain obscure, with various mechanisms proposed for their formation, likely depending on environment. These mechanisms would imprint different signatures in the galaxies stellar kinematics out to large radii, offering a me thod for distinguishing between them. We aim to study a sample of six S0 galaxies from a range of environments, and use planetary nebulae (PNe) as tracers of their stellar populations out to very large radii, to determine their kinematics in order to understand their origins. Using a special-purpose instrument, the Planetary Nebula Spectrograph, we observe and extract PNe catalogues for these six systems*. We show that the PNe have the same spatial distribution as the starlight, that the numbers of them are consistent with what would be expected in a comparable old stellar population in elliptical galaxies, and that their kinematics join smoothly onto those derived at smaller radii from conventional spectroscopy. The high-quality kinematic observations presented here form an excellent set for studying the detailed kinematics of S0 galaxies, in order to unravel their formation histories. We find that PNe are good tracers of stellar kinematics in these systems. We show that the recovered kinematics are largely dominated by rotational motion, although with significant random velocities in most cases.
To investigate the origins of S0 galaxies, we present a new method of analyzing their stellar kinematics from discrete tracers such as planetary nebulae. This method involves binning the data in the radial direction so as to extract the most general possible non-parametric kinematic profiles, and using a maximum likelihood fit within each bin in order to make full use of the information in the discrete kinematic tracers. Both disk and spheroid kinematic components are fitted, with a two-dimensional decomposition of imaging data used to attribute to each tracer a probability of membership in the separate components. Likelihood clipping also allows us to identify objects whose properties are not consistent with the adopted model, rendering the technique robust against contaminants and able to identify additional kinematic features. The method is first tested on an N-body simulated galaxy to assess possible sources of systematic error associated with the structural and kinematic decomposition, which are found to be small. It is then applied to the S0 system NGC~1023, for which a planetary nebula catalogue has already been released and analyzed by (Noordermeer et al., 2008). The correct inclusion of the spheroidal component allows us to show that, contrary to previous claims, the stellar kinematics of this galaxy are indistinguishable from those of a normal spiral galaxy, indicating that it may have evolved directly from such a system via gas stripping or secular evolution. The method also successfully identifies a population of outliers whose kinematics are different from those of the main galaxy; these objects can be identified with a stellar stream associated with the companion galaxy NGC~1023A.
We investigate the manner in which lenticular galaxies are formed by studying their stellar kinematics: an S0 formed from a fading spiral galaxy should display similar cold outer disc kinematics to its progenitor, while an S0 formed in a minor merger should be more dominated by random motions. In a pilot study to attempt to distinguish between these scenarios, we have measured the planetary nebula (PN) kinematics of the nearby S0 system NGC 1023. Using the Planetary Nebula Spectrograph, we have detected and measured the line-of-sight velocities of 204 candidate PNe in the field of this galaxy. Out to intermediate radii, the system displays the kinematics of a normal rotationally-supported disc system. After correction of its rotational velocities for asymmetric drift, the galaxy lies just below the spiral galaxy Tully-Fisher relation, as one would expect for a fading system. However, at larger radii the kinematics undergo a gradual but major transition to random motion with little rotation. This transition does not seem to reflect a change in the viewing geometry or the presence of a distinct halo component, since the number counts of PNe follow the same simple exponential decline as the stellar continuum with the same projected disc ellipticity out to large radii. The galaxys small companion, NGC 1023A, does not seem to be large enough to have caused the observed modification either. This combination of properties would seem to indicate a complex evolutionary history in either the transition to form an S0 or in the past life of the spiral galaxy from which the S0 formed. More data sets of this type from both spirals and S0s are needed in order to definitively determine the relationship between these types of system.
124 - E. Laurikainen , H. Salo , R. Buta 2011
A review of the results of the Near-IR S0 galaxy Survey (NIRS0S) is presented. NIRS0S is a magnitude (mB 12.5 mag) and inclination (< 65o) limited sample of 200 nearby galaxies, mainly S0s. It uses deep Ks -band images, typically reaching a surface b rightness of 23.5 mag arcsec^(-2) . Detailed visual and photometric classifications were made, for the first time coding also the lenses in a systematic manner. As a comparison sample, a similar sized spiral galaxy sample with similar image quality was used. The main emphasis were to study whether the S0s are former spirals in which star formation has been ceased, and also, how robust are bars in galaxies. Based on our analysis the Hubble sequence was revisited: following the early idea by van den Bergh we suggested that the S0s are spread throughout the Hubble sequence in parallel tuning forks as spirals (S0a, S0b, S0c etc.). This is evidenced by our improved bulge-to-total (B/T) flux ratios, reaching as small values as typically found in late-type spirals. The properties of bulges and disks in S0s were found to be similar to those in spirals. Also, the masses and scale parameters of the bulges and disks were found to be coupled. Bars were found to be fairly robust both in S0s and spirals, but inspite of that bars might evolve significantly within the Hubble sequence.
Though S0 galaxies are usually thought to be `red and dead, they demonstrate often star formation organized in ring structures. We try to clarify the nature of this phenomenon and its difference from star formation in spiral galaxies. The moderate-lu minosity nearby S0 galaxy, NGC 4513, is studied here. By applying long-slit spectroscopy along the major axis of NGC 4513, we have measured gas and star kinematics, Lick indices for the main body of the galaxy, and strong emission-line flux ratios in the ring. After inspecting the gas excitation in the ring using the line ratios diagnostic diagrams and have assured that it is ionized by young stars, we have determined the gas oxygen abundance by using popular strong-line calibration methods. We have estimated star formation rate (SFR) in the outer ring by using the archival Galaxy Evolution Explorer (GALEX) ultraviolet images of the galaxy. The ionized gas counterrotates the stars over the whole extension of NGC 4513 so being accreted from outside. The gas metallicity in the ring is slightly subsolar, [O/H]=-0.2 dex, matching the metallicity of the stellar component of the main galactic disc. However the stellar component of the ring is much more massive than can be explained by the current star formation level in the ring. We conclude that probably the ring of NGC 4513 is a result of tidal disruption of a massive gas-rich satellite, or it may be a consequence of a long star-formation event provoked by a gas accretion from a cosmological filament having started some 3 Gyr ago.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا