ترغب بنشر مسار تعليمي؟ اضغط هنا

Unravelling the origins of S0 galaxies using maximum likelihood analysis of planetary nebulae kinematics

105   0   0.0 ( 0 )
 نشر من قبل Arianna Cortesi
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To investigate the origins of S0 galaxies, we present a new method of analyzing their stellar kinematics from discrete tracers such as planetary nebulae. This method involves binning the data in the radial direction so as to extract the most general possible non-parametric kinematic profiles, and using a maximum likelihood fit within each bin in order to make full use of the information in the discrete kinematic tracers. Both disk and spheroid kinematic components are fitted, with a two-dimensional decomposition of imaging data used to attribute to each tracer a probability of membership in the separate components. Likelihood clipping also allows us to identify objects whose properties are not consistent with the adopted model, rendering the technique robust against contaminants and able to identify additional kinematic features. The method is first tested on an N-body simulated galaxy to assess possible sources of systematic error associated with the structural and kinematic decomposition, which are found to be small. It is then applied to the S0 system NGC~1023, for which a planetary nebula catalogue has already been released and analyzed by (Noordermeer et al., 2008). The correct inclusion of the spheroidal component allows us to show that, contrary to previous claims, the stellar kinematics of this galaxy are indistinguishable from those of a normal spiral galaxy, indicating that it may have evolved directly from such a system via gas stripping or secular evolution. The method also successfully identifies a population of outliers whose kinematics are different from those of the main galaxy; these objects can be identified with a stellar stream associated with the companion galaxy NGC~1023A.



قيم البحث

اقرأ أيضاً

The stellar kinematics of the spheroids and discs of S0 galaxies contain clues to their formation histories. Unfortunately, it is difficult to disentangle the two components and to recover their stellar kinematics in the faint outer parts of the gala xies using conventional absorption line spectroscopy. This paper therefore presents the stellar kinematics of six S0 galaxies derived from observations of planetary nebulae (PNe), obtained using the Planetary Nebula Spectrograph. To separate the kinematics of the two components, we use a maximum-likelihood method that combines the discrete kinematic data with a photometric component decomposition. The results of this analysis reveal that: the discs of S0 galaxies are rotationally supported; however, the amount of random motion in these discs is systematically higher than in comparable spiral galaxies; and the S0s lie around one magnitude below the Tully--Fisher relation for spiral galaxies, while their spheroids lie nearly one magnitude above the Faber--Jackson relation for ellipticals. All of these findings are consistent with a scenario in which spirals are converted into S0s through a process of mild harassment or pestering, with their discs somewhat heated and their spheroid somewhat enhanced by the conversion process. In such a scenario, one might expect the properties of S0s to depend on environment. We do not see such an effect in this fairly small sample, although any differences would be diluted by the fact that the current location does not necessarily reflect the environment in which the transformation occurred. Similar observations of larger samples probing a broader range of environments, coupled with more detailed modelling of the transformation process to match the wide range of parameters that we have shown can now be measured, should take us from these first steps to the definitive answer as to how S0 galaxies form.
We investigate the manner in which lenticular galaxies are formed by studying their stellar kinematics: an S0 formed from a fading spiral galaxy should display similar cold outer disc kinematics to its progenitor, while an S0 formed in a minor merger should be more dominated by random motions. In a pilot study to attempt to distinguish between these scenarios, we have measured the planetary nebula (PN) kinematics of the nearby S0 system NGC 1023. Using the Planetary Nebula Spectrograph, we have detected and measured the line-of-sight velocities of 204 candidate PNe in the field of this galaxy. Out to intermediate radii, the system displays the kinematics of a normal rotationally-supported disc system. After correction of its rotational velocities for asymmetric drift, the galaxy lies just below the spiral galaxy Tully-Fisher relation, as one would expect for a fading system. However, at larger radii the kinematics undergo a gradual but major transition to random motion with little rotation. This transition does not seem to reflect a change in the viewing geometry or the presence of a distinct halo component, since the number counts of PNe follow the same simple exponential decline as the stellar continuum with the same projected disc ellipticity out to large radii. The galaxys small companion, NGC 1023A, does not seem to be large enough to have caused the observed modification either. This combination of properties would seem to indicate a complex evolutionary history in either the transition to form an S0 or in the past life of the spiral galaxy from which the S0 formed. More data sets of this type from both spirals and S0s are needed in order to definitively determine the relationship between these types of system.
We present first results of a study of the halo kinematics for a sample of early type galaxies using planetary nebulae (PNe) as kinematical tracers. PNe allow to extend up to several effective radii (Re) the information from absorption line kinematic s (confined to within 1 or 2 Re), providing valuable information and constraints for merger simulations and galaxy formation models. We find that the specific angular momentum per unit mass has a more complex radial dependence when the halo region is taken into account and that the halo velocity dispersion is related to the total galaxy luminosity, isophotal shape, and number of PNe per unit of luminosity
We quantify the evolution of the spiral, S0 and elliptical fractions in galaxy clusters as a function of cluster velocity dispersion ($sigma$) and X-ray luminosity ($L_X$) using a new database of 72 nearby clusters from the WIde-Field Nearby Galaxy-c luster Survey (WINGS) combined with literature data at $z=0.5-1.2$. Most WINGS clusters have $sigma$ between 500 and 1100 $rm km s^{-1}$, and $L_X$ between 0.2 and $5 times 10^{44} rm erg/s$. The S0 fraction in clusters is known to increase with time at the expense of the spiral population. We find that the spiral and S0 fractions have evolved more strongly in lower $sigma$, less massive clusters, while we confirm that the proportion of ellipticals has remained unchanged. Our results demonstrate that morphological evolution since $z=1$ is not confined to massive clusters, but is actually more pronounced in low mass clusters, and therefore must originate either from secular (intrinsic) evolution and/or from environmental mechanisms that act preferentially in low-mass environments, or both in low- and high-mass systems. We also find that the evolution of the spiral fraction perfectly mirrors the evolution of the fraction of star-forming galaxies. Interestingly, at low-z the spiral fraction anticorrelates with $L_X$. Conversely, no correlation is observed with $sigma$. Given that both $sigma$ and $L_X$ are tracers of the cluster mass, these results pose a challenge for current scenarios of morphological evolution in clusters.
Using an [OIII]5007 on-band/off-band filter technique, we identify 109 planetary nebulae (PNe) candidates in M 82, using the FOCAS instrument at the 8.2m Subaru Telescope. The use of ancillary high-resolution HST ACS H-alpha imaging aided in discrimi nating PNe from contaminants such as supernova remnants and compact HII regions. Once identified, these PNe reveal a great deal about the host galaxy; our analysis covers kinematics, stellar distribution, and distance determination. Radial velocities were determined for 94 of these PNe using a method of slitless spectroscopy, from which we obtain a clear picture of the galaxys rotation. Overall, our results agree with those derived by CO(2-1) and HI measurements that show a falling, near-Keplerian rotation curve. However, we find a subset of our PNe that appear to lie far above the plane (~1 kpc), yet these objects appear to be rotating as fast as objects close to the plane. These objects will require further study to determine if they are members of a halo population, or if they can be interpreted as a manifestation of a thickened disk as a consequence of a past interaction with M 81. In addition, [OIII]5007 emission line photometry of the PNe allows the construction of a planetary nebula luminosity function (PNLF). Our PNLF distance determination for M 82 yields a larger distance than those derived using the TRGB, using Cepheid variable stars in nearby group member M 81, or using the PNLF of M 81. We show that this inconsistency most likely stems from our inability to completely correct for internal extinction imparted by this dusty, starburst galaxy. (Abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا