ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin wave mode coexistence on the nano-scale: A consequence of the Oersted field induced asymmetric energy landscape

36   0   0.0 ( 0 )
 نشر من قبل Randy Dumas
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It has been argued that if multiple spin wave modes are competing for the same centrally located energy source, as in a nanocontact spin torque oscillator, that only one mode should survive in the steady state. Here, the experimental conditions necessary for mode coexistence are explored. Mode coexistence is facilitated by the local field asymmetries induced by the spatially inhomogeneous Oersted field, which leads to a physical separation of the modes, and is further promoted by spin wave localization at reduced applied field angles. Finally, both simulation and experiment reveal a low frequency signal consistent with the intermodulation of two coexistent modes.

قيم البحث

اقرأ أيضاً

91 - Chi Zhang , Inhee Lee , Yong Pu 2021
We demonstrate a high-quality spin orbit torque nano-oscillator comprised of spin wave modes confined by the magnetic field by the strongly inhomogeneous dipole field of a nearby micromagnet. This approach enables variable spatial confinement and sys tematic tuning of magnon spectrum and spectral separations for studying the impact of multi-mode interactions on auto-oscillations. We find these dipole field-localized spin wave modes exhibit good characteristic properties as auto-oscillators--narrow linewidth and large amplitude--while persisting up to room temperature. We find that the linewidth of the lowest-lying localized mode is approximately proportional to temperature in good agreement with theoretical analysis of the impact of thermal fluctuations. This demonstration of a clean oscillator with tunable properties provides a powerful tool for understanding the fundamental limitations and linewidth contributions to improve future spin-Hall oscillators.
Current induced spin wave excitations in spin transfer torque nano-contacts are known as a promising way to generate exchange-dominated spin waves at the nano-scale. It has been shown that when these systems are magnetized in the film plane, broken s patial symmetry of the field around the nano-contact induced by the Oersted field opens the possibility for spin wave mode co-existence including a non-linear self-localized spin-wave bullet and a propagating mode. By means of micromagnetic simulations, here we show that in systems with strong perpendicular magnetic anisotropy (PMA) in the free layer, two propagating spin wave modes with different frequency and spatial distribution can be excited simultaneously. Our results indicate that in-plane magnetized spin transfer nano-contacts in PMA materials do not host a solitonic self-localized spin-wave bullet, which is different from previous studies for systems with in plane magnetic anisotropy. This feature renders them interesting for nano-scale magnonic waveguides and crystals since magnon transport can be configured by tuning the applied current.
We consider the energetics of a superconducting double dot, comprising two superconducting islands coupled in series via a Josephson junction. The periodicity of the stability diagram is governed by the competition between the charging energy and the superconducting gap, and the stability of each charge state depends upon its parity. We also find that, at finite temperatures, thermodynamic considerations have a significant effect on the stability diagram.
The spin pumping efficiency of lateral standing spin wave modes in a rectangular YIG/Pt sample has been investigated by means of the inverse spin-Hall effect (ISHE). The standing spin waves drive spin pumping, the generation of spin currents from mag netization precession, into the Pt layer which is converted into a detectable voltage due to the ISHE. We discovered that the spin pumping efficiency is significantly higher for lateral standing surface spin waves rather than for volume spin wave modes. The results suggest that the use of higher-mode surface spin waves allows for the fabrication of an efficient spin-current injector.
We report a study on the complete spin-wave spectrum inside a vortex state nano-disk. Transformation of this spectrum is continuously monitored as the nano-disk becomes gradually magnetized by a perpendicular magnetic field and encouters a second ord er phase transition to the uniformly magnetized state. This reveals the bijective relationship that exists between the eigen-modes in the vortex state with the ones in the saturated state. It is found that the gyrotropic mode can be continuously viewed as a uniform phase precession, which uniquely softens (its frequency vanishes) at the saturation field to transform above into the Kittel mode. By contrast the other spin-wave modes remain finite as a function of the applied field while their character is altered by level anti-crossing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا