ترغب بنشر مسار تعليمي؟ اضغط هنا

On the speed of constraint propagation and the time complexity of arc consistency testing

843   0   0.0 ( 0 )
 نشر من قبل Oleg Verbitsky
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Establishing arc consistency on two relational structures is one of the most popular heuristics for the constraint satisfaction problem. We aim at determining the time complexity of arc consistency testing. The input structures $G$ and $H$ can be supposed to be connected colored graphs, as the general problem reduces to this particular case. We first observe the upper bound $O(e(G)v(H)+v(G)e(H))$, which implies the bound $O(e(G)e(H))$ in terms of the number of edges and the bound $O((v(G)+v(H))^3)$ in terms of the number of vertices. We then show that both bounds are tight up to a constant factor as long as an arc consistency algorithm is based on constraint propagation (like any algorithm currently known). Our argument for the lower bounds is based on examples of slow constraint propagation. We measure the speed of constraint propagation observed on a pair $G,H$ by the size of a proof, in a natural combinatorial proof system, that Spoiler wins the existential 2-pebble game on $G,H$. The proof size is bounded from below by the game length $D(G,H)$, and a crucial ingredient of our analysis is the existence of $G,H$ with $D(G,H)=Omega(v(G)v(H))$. We find one such example among old benchmark instances for the arc consistency problem and also suggest a new, different construction.



قيم البحث

اقرأ أيضاً

Constraint LTL, a generalisation of LTL over Presburger constraints, is often used as a formal language to specify the behavior of operational models with constraints. The freeze quantifier can be part of the language, as in some real-time logics, bu t this variable-binding mechanism is quite general and ubiquitous in many logical languages (first-order temporal logics, hybrid logics, logics for sequence diagrams, navigation logics, logics with lambda-abstraction etc.). We show that Constraint LTL over the simple domain (N,=) augmented with the freeze quantifier is undecidable which is a surprising result in view of the poor language for constraints (only equality tests). Man
The universal-algebraic approach has proved a powerful tool in the study of the complexity of CSPs. This approach has previously been applied to the study of CSPs with finite or (infinite) omega-categorical templates, and relies on two facts. The fir st is that in finite or omega-categorical structures A, a relation is primitive positive definable if and only if it is preserved by the polymorphisms of A. The second is that every finite or omega-categorical structure is homomorphically equivalent to a core structure. In this paper, we present generalizations of these facts to infinite structures that are not necessarily omega-categorical. (This abstract has been severely curtailed by the space constraints of arXiv -- please read the full abstract in the article.) Finally, we present applications of our general results to the description and analysis of the complexity of CSPs. In particular, we give general hardness criteria based on the absence of polymorphisms that depend on more than one argument, and we present a polymorphism-based description of those CSPs that are first-order definable (and therefore can be solved in polynomial time).
Satisfiability Modulo Theories (SMT) and SAT solvers are critical components in many formal software tools, primarily due to the fact that they are able to easily solve logical problem instances with millions of variables and clauses. This efficiency of solvers is in surprising contrast to the traditional complexity theory position that the problems that these solvers address are believed to be hard in the worst case. In an attempt to resolve this apparent discrepancy between theory and practice, theorists have proposed the study of these solvers as proof systems that would enable establishing appropriate lower and upper bounds on their complexity. For example, in recent years it has been shown that (idealized models of) SAT solvers are polynomially equivalent to the general resolution proof system for propositional logic, and SMT solvers that use the CDCL(T) architecture are polynomially equivalent to the Res*(T) proof system. In this paper, we extend this program to the MCSAT approach for SMT solving by showing that the MCSAT architecture is polynomially equivalent to the Res*(T) proof system. Thus, we establish an equivalence between CDCL(T) and MCSAT from a proof-complexity theoretic point of view. This is a first and essential step towards a richer theory that may help (parametrically) characterize the kinds of formulas for which MCSAT-based SMT solvers can perform well.
We consider the temporal logic with since and until modalities. This temporal logic is expressively equivalent over the class of ordinals to first-order logic by Kamps theorem. We show that it has a PSPACE-complete satisfiability problem over the cla ss of ordinals. Among the consequences of our proof, we show that given the code of some countable ordinal alpha and a formula, we can decide in PSPACE whether the formula has a model over alpha. In order to show these results, we introduce a class of simple ordinal automata, as expressive as Buchi ordinal automata. The PSPACE upper bound for the satisfiability problem of the temporal logic is obtained through a reduction to the nonemptiness problem for the simple ordinal automata.
A natural and established way to restrict the constraint satisfaction problem is to fix the relations that can be used to pose constraints; such a family of relations is called a constraint language. In this article, we study arc consistency, a heavi ly investigated inference method, and three extensions thereof from the perspective of constraint languages. We conduct a comparison of the studied methods on the basis of which constraint languages they solve, and we present new polynomial-time tractability results for singleton arc consistency, the most powerful method studied.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا