ترغب بنشر مسار تعليمي؟ اضغط هنا

Nondegeneracy of critical points of the mean curvature of the boundary for Riemannian manifolds

38   0   0.0 ( 0 )
 نشر من قبل Marco Ghimenti Dr
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $M$ be a compact smooth Riemannian manifold of finite dimension $n+1$ with boundary $partial M$and $partial M$ is a compact $n$-dimensional submanifold of $M$. We show that for generic Riemannian metric $g$, all the critical points of the mean curvature of $partial M$ are nondegenerate.

قيم البحث

اقرأ أيضاً

Considering the second boundary value problem of the Lagrangian mean curvature equation, we obtain the existence and uniqueness of the smooth uniformly convex solution, which generalizes the Brendle-Warrens theorem about minimal Lagrangian diffeomorphism in Euclidean metric space.
We investigate existence and nonexistence of stationary stable nonconstant solutions, i.e. patterns, of semilinear parabolic problems in bounded domains of Riemannian manifolds satisfying Robin boundary conditions. These problems arise in several mod els in applications, in particular in Mathematical Biology. We point out the role both of the nonlinearity and of geometric objects such as the Ricci curvature of the manifold, the second fundamental form of the boundary of the domain and its mean curvature. Special attention is devoted to surfaces of revolution and to spherically symmetric manifolds, where we prove refined results.
In this paper we provide some local and global splitting results on complete Riemannian manifolds with nonnegative Ricci curvature. We achieve the splitting through the analysis of some pointwise inequalities of Modica type which hold true for every bounded solution to a semilinear Poisson equation. More precisely, we prove that the existence of a nonconstant bounded solution $u$ for which one of the previous inequalities becomes an equality at some point leads to the splitting results as well as to a classification of such a solution $u$.
Let $M$ be a complete, simply connected Riemannian manifold with negative curvature. We obtain some Moser-Trudinger inequalities with sharp constants on $M$.
We employ three different methods to prove the following result on prescribed scalar curvature plus mean curvature problem: Let $(M^n,g_0)$ be a $n$-dimensional smooth compact manifold with boundary, where $n geq 3$, assume the conformal invariant $Y (M,partial M)<0$. Given any negative smooth functions $f$ in $M$ and $h$ on $partial M$, there exists a unique conformal metric of $g_0$ such that its scalar curvature equals $f$ and mean curvature curvature equals $h$. The first two methods are sub-super-solution method and subcritical approximation, and the third method is a geometric flow. In the flow approach, assume another conformal invariant $Q(M,pa M)$ is a negative real number, for some class of initial data, we prove the short time and long time existences of the so-called prescribed scalar curvature plus mean curvature flows, as well as their asymptotic convergence. Via a family of such flows together with some additional variational arguments, under the flow assumptions we prove existence and uniqueness of positive minimizers of the associated energy functional and also the above result by analyzing asymptotic limits of the flows and the relations among some conformal invariants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا