ﻻ يوجد ملخص باللغة العربية
Recently, the fundamental laws of thermodynamics have been reconsidered for small systems. The discovery of the fluctuation relations has spurred theoretical and experimental studies on thermodynamics of systems with few degrees of freedom. The concept of entropy production has been extended to the microscopic level by considering stochastic trajectories of a system coupled to a heat bath. However, the experimental observation of the microscopic entropy production remains elusive. We measure distributions of the microscopic entropy production in a single-electron box consisting of two islands with a tunnel junction. The islands are coupled to separate heat baths at different temperatures, maintaining a steady thermal non-equilibrium. As Jarzynski equality between work and free energy is not applicable in this case, the entropy production becomes the relevant parameter. We verify experimentally that the integral and detailed fluctuation relations are satisfied. Furthermore, the coarse-grained entropy production from trajectories of electronic transitions is related to the bare entropy production by a universal formula. Our results reveal the fundamental roles of irreversible entropy production in non-equilibrium small systems.
Computing the stochastic entropy production associated with the evolution of a stochastic dynamical system is a well-established problem. In a small number of cases such as the Ornstein-Uhlenbeck process, of which we give a complete exposition, the d
We study the entropy production rate in systems described by linear Langevin equations, containing mixed even and odd variables under time reversal. Exact formulas are derived for several important quantities in terms only of the means and covariance
We consider a system of two Brownian particles (say A and B), coupled to each other via harmonic potential of stiffness constant $k$. Particle-A is connected to two heat baths of constant temperatures $T_1$ and $T_2$, and particle-B is connected to a
A rigorous derivation of nonequilibrium entropy production via the path-integral formalism is presented. Entropy production is defined as the entropy change piled in a heat reservoir as a result of a nonequilibrium thermodynamic process. It is a cent
We discuss the non-equilibrium properties of a thermally driven micromachine consisting of three spheres which are in equilibrium with independent heat baths characterized by different temperatures. Within the framework of a linear stochastic Langevi