ترغب بنشر مسار تعليمي؟ اضغط هنا

Using electromagnetic observations to aid gravitational-wave parameter estimation of compact binaries observed with LISA II: The effect of knowing the sky position

31   0   0.0 ( 0 )
 نشر من قبل Sweta Shah
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this follow-up paper, we continue our study of the effect of using knowledge from electromagnetic observations in the gravitational wave (GW) data analysis of Galactic binaries that are predicted to be observed by the new textit{Laser Interferometer Space Antenna} in the low-frequency range, $10^{-4} :mathrm{Hz}<f<1 :mathrm{Hz}$. In the first paper, we have shown that the strong correlation between amplitude and inclination can be used for mildly inclined binaries to improve the uncertainty in amplitude, and that this correlation depends on the inclination of the system. In this paper we investigate the overall effect of the other orientation parameters, namely the sky position and the polarisation angle. We find that after the inclination, the ecliptic latitude of the source has the strongest effect in determining the GW parameter uncertainties. We ascertain that the strong correlation we found previously, only depends on the inclination of the source and not on the other orientation parameters. We find that knowing the sky position of the source from electromagnetic data can reduce the GW parameter uncertainty up to a factor of $sim 2$, depending on the inclination and the ecliptic latitude of the system. Knowing the sky position and inclination can reduce the uncertainty in amplitude by a factor larger than 40. We also find that unphysical errors in the inclinations, which we found when using the Fisher matrix, can affect the corresponding uncertainties in the amplitudes, which need to be corrected.

قيم البحث

اقرأ أيضاً

The Advanced LIGO and Advanced Virgo gravitational wave (GW) detectors will begin operation in the coming years, with compact binary coalescence events a likely source for the first detections. The gravitational waveforms emitted directly encode info rmation about the sources, including the masses and spins of the compact objects. Recovering the physical parameters of the sources from the GW observations is a key analysis task. This work describes the LALInference software library for Bayesian parameter estimation of compact binary signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies. We show that our implementation is able to correctly recover the parameters of compact binary signals from simulated data from the advanced GW detectors. We demonstrate this with a detailed comparison on three compact binary systems: a binary neutron star, a neutron star black hole binary and a binary black hole, where we show a cross-comparison of results obtained using three independent sampling algorithms. These systems were analysed with non-spinning, aligned spin and generic spin configurations respectively, showing that consistent results can be obtained even with the full 15-dimensional parameter space of the generic spin configurations. We also demonstrate statistically that the Bayesian credible intervals we recover correspond to frequentist confidence intervals under correct prior assumptions by analysing a set of 100 signals drawn from the prior. We discuss the computational cost of these algorithms, and describe the general and problem-specific sampling techniques we have used to improve the efficiency of sampling the compact binary coalescence parameter space.
We propose a novel method to test the consistency of the multipole moments of compact binary systems with the predictions of General Relativity (GR). The multipole moments of a compact binary system, known in terms of symmetric and trace-free tensors , are used to calculate the gravitational waveforms from compact binaries within the post-Newtonian (PN) formalism. For nonspinning compact binaries, we derive the gravitational wave phasing formula, in the frequency domain, parametrizing each PN order term in terms of the multipole moments which contribute to that order. Using GW observations, this {it{parametrized multipolar phasing}} would allow us to derive the bounds on possible departures from the multipole structure of GR and hence constrain the parameter space of alternative theories of gravity. We compute the projected accuracies with which the second generation ground-based detectors, such as Advanced Laser Interferometer Gravitational-wave Observatory (LIGO), the third generation detectors such as Einstein Telescope and Cosmic Explorer, as well as space-based detector Laser Interferometer Space Antenna (LISA) will be able to measure these multipole parameters. We find that while Advanced LIGO can measure the first two or three multipole coefficients with good accuracy, Cosmic Explorer and Einstein Telescope may be able to measure the first four multipole coefficients which enter the phasing formula. Intermediate mass ratio inspirals, with mass ratio of several tens, in the frequency band of planned space-based LISA mission should be able to measure all the seven multipole coefficients which appear in the 3.5PN phasing formula. Our finding highlights the importance of this class of sources for probing the strong-field gravity regime. The proposed test will facilitate the first probe of the multipolar structure of Einsteins general relativity.
LISA and Taiji are expected to form a space-based gravitational-wave (GW) detection network in the future. In this work, we make a forecast for the cosmological parameter estimation with the standard siren observation from the LISA-Taiji network. We simulate the standard siren data based on a scenario with configuration angle of $40^{circ}$ between LISA and Taiji. Three models for the population of massive black hole binary (MBHB), i.e., pop III, Q3d, and Q3nod, are considered to predict the events of MBHB mergers. We find that, based on the LISA-Taiji network, the number of electromagnetic (EM) counterparts detected is almost doubled compared with the case of single Taiji mission. Therefore, the LISA-Taiji networks standard siren observation could provide much tighter constraints on cosmological parameters. For example, solely using the standard sirens from the LISA-Taiji network, the constraint precision of $H_0$ could reach $1.3%$. Moreover, combined with the CMB data, the GW-EM observation based on the LISA-Taiji network could also tightly constrain the equation of state of dark energy, e.g., the constraint precision of $w$ reaches about $4%$, which is comparable with the result of CMB+BAO+SN. It is concluded that the GW standard sirens from the LISA-Taiji network will become a useful cosmological probe in understanding the nature of dark energy in the future.
The Laser Interferometer Space Antenna will be the first Gravitational Wave observatory in space. It is scheduled to fly in the early 2030s. LISA design predicts sensitivity levels that enable the detection a Stochastic Gravitational Wave Background signal. This stochastic type of signal is a superposition of signatures from sources that cannot be resolved individually and which are of various types, each one contributing with a different spectral shape. In this work we present a fast methodology to assess the detectability of a stationary, Gaussian, and isotropic stochastic signal in a set of frequency bins, combining information from the available data channels. We derive an analytic expression of the Bayes Factor between the instrumental noise-only and the signal plus instrumental noise models, that allows us to compute the detectability bounds of a given signal, as a function of frequency and prior knowledge on the instrumental noise spectrum.
The millihertz gravitational-wave frequency band is expected to contain a rich symphony of signals with sources ranging from galactic white dwarf binaries to extreme mass ratio inspirals. Many of these gravitational-wave signals will not be individua lly resolvable. Instead, they will incoherently add to produce stochastic gravitational-wave confusion noise whose frequency content will be governed by the dynamics of the sources. The angular structure of the power of the confusion noise will be modulated by the distribution of the sources across the sky. Measurement of this structure can yield important information about the distribution of sources on galactic and extra-galactic scales, their astrophysics and their evolution over cosmic timescales. Moreover, since the confusion noise is part of the noise budget of LISA, mapping it will also be essential for studying resolvable signals. In this paper, we present a Bayesian algorithm to probe the angular distribution of the stochastic gravitational-wave confusion noise with LISA using a spherical harmonic basis. We develop a technique based on Clebsch-Gordan coefficients to mathematically constrain the spherical harmonics to yield a non-negative distribution, making them optimal for expanding the gravitational-wave power and amenable to Bayesian inference. We demonstrate these techniques using a series of simulations and analyses, including recovery of simulated distributed and localized sources of gravitational-wave power. We also apply this method to map the gravitational-wave foreground from galactic white-dwarfs using a simplified model of the galactic white dwarf distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا