ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library

140   0   0.0 ( 0 )
 نشر من قبل John Veitch
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Advanced LIGO and Advanced Virgo gravitational wave (GW) detectors will begin operation in the coming years, with compact binary coalescence events a likely source for the first detections. The gravitational waveforms emitted directly encode information about the sources, including the masses and spins of the compact objects. Recovering the physical parameters of the sources from the GW observations is a key analysis task. This work describes the LALInference software library for Bayesian parameter estimation of compact binary signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies. We show that our implementation is able to correctly recover the parameters of compact binary signals from simulated data from the advanced GW detectors. We demonstrate this with a detailed comparison on three compact binary systems: a binary neutron star, a neutron star black hole binary and a binary black hole, where we show a cross-comparison of results obtained using three independent sampling algorithms. These systems were analysed with non-spinning, aligned spin and generic spin configurations respectively, showing that consistent results can be obtained even with the full 15-dimensional parameter space of the generic spin configurations. We also demonstrate statistically that the Bayesian credible intervals we recover correspond to frequentist confidence intervals under correct prior assumptions by analysing a set of 100 signals drawn from the prior. We discuss the computational cost of these algorithms, and describe the general and problem-specific sampling techniques we have used to improve the efficiency of sampling the compact binary coalescence parameter space.

قيم البحث

اقرأ أيضاً

We propose a novel method to test the consistency of the multipole moments of compact binary systems with the predictions of General Relativity (GR). The multipole moments of a compact binary system, known in terms of symmetric and trace-free tensors , are used to calculate the gravitational waveforms from compact binaries within the post-Newtonian (PN) formalism. For nonspinning compact binaries, we derive the gravitational wave phasing formula, in the frequency domain, parametrizing each PN order term in terms of the multipole moments which contribute to that order. Using GW observations, this {it{parametrized multipolar phasing}} would allow us to derive the bounds on possible departures from the multipole structure of GR and hence constrain the parameter space of alternative theories of gravity. We compute the projected accuracies with which the second generation ground-based detectors, such as Advanced Laser Interferometer Gravitational-wave Observatory (LIGO), the third generation detectors such as Einstein Telescope and Cosmic Explorer, as well as space-based detector Laser Interferometer Space Antenna (LISA) will be able to measure these multipole parameters. We find that while Advanced LIGO can measure the first two or three multipole coefficients with good accuracy, Cosmic Explorer and Einstein Telescope may be able to measure the first four multipole coefficients which enter the phasing formula. Intermediate mass ratio inspirals, with mass ratio of several tens, in the frequency band of planned space-based LISA mission should be able to measure all the seven multipole coefficients which appear in the 3.5PN phasing formula. Our finding highlights the importance of this class of sources for probing the strong-field gravity regime. The proposed test will facilitate the first probe of the multipolar structure of Einsteins general relativity.
134 - Daniel Wysocki 2018
Gravitational wave measurements will provide insight into the population of coalescing compact binaries throughout the universe. We describe and demonstrate a flexible parametric method to infer the event rate as a function of compact binary paramete rs, accounting for Poisson error and selection biases. Using concrete synthetic data based on projections for LIGO and Virgos O3 run, we discuss how well GW measurements could constrain the mass and spin distribution of coalescing neutron stars and black holes in the near future, within the context of several phenomenological models described in this work. We demonstrate that only a few tens of events can enable astrophysically significant constraints on the spin magnitude and orientation distribution of BHs in merging binaries. We discuss how astrophysical priors or other measurements can inform the interpretation of future measurements. Using publicly-available results, we estimate the event rate versus mass for binary black holes. To connect to previously-published work, we provide estimates including reported O2 BBH candidates, making several unwarranted but simplifying assumptions for the sensitivity of the network and compleness of the reported set of events. Consistent with prior work, we find BHs in binaries likely have low natal spin. With available results and a population favoring low spin, we cant presently constrain the typical misalignments of the binary black hole population. All of the tools described in this work are publicly available and ready-to-use to interpret real or synthetic LIGO data, and to synthesize projected data from future observing runs.
Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model s election are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a blind injection where the signal was not initially revealed to the collaboration. We exemplify the ability to extract information about the source physics on signals that cover the neutron star and black hole parameter space over the individual mass range 1 Msun - 25 Msun and the full range of spin parameters. The cases reported in this study provide a snap-shot of the status of parameter estimation in preparation for the operation of advanced detectors.
In an earlier work [S. Kastha et al., PRD {bf 98}, 124033 (2018)], we developed the {it parametrized multipolar gravitational wave phasing formula} to test general relativity, for the non-spinning compact binaries in quasi-circular orbit. In this pap er, we extend the method and include the important effect of spins in the inspiral dynamics. Furthermore, we consider parametric scaling of PN coefficients of the conserved energy for the compact binary, resulting in the parametrized phasing formula for non-precessing spinning compact binaries in quasi-circular orbit. We also compute the projected accuracies with which the second and third generation ground-based gravitational wave detector networks as well as the planned space-based detector LISA will be able to measure the multipole deformation parameters and the binding energy parameters. Based on different source configurations, we find that a network of third-generation detectors would have comparable ability to that of LISA in constraining the conservative and dissipative dynamics of the compact binary systems. This parametrized multipolar waveform would be extremely useful not only in deriving the first upper limits on any deviations of the multipole and the binding energy coefficients from general relativity using the gravitational wave detections, but also for science case studies of next generation gravitational wave detectors.
Estimating the parameters of gravitational wave signals detected by ground-based detectors requires an understanding of the properties of the detectors noise. In particular, the most commonly used likelihood function for gravitational wave data analy sis assumes that the noise is Gaussian, stationary, and of known frequency-dependent variance. The variance of the colored Gaussian noise is used as a whitening filter on the data before computation of the likelihood function. In practice the noise variance is not known and it evolves over timescales of dozens of seconds to minutes. We study two methods for estimating this whitening filter for ground-based gravitational wave detectors with the goal of performing parameter estimation studies. The first method uses large amounts of data separated from the specific segment we wish to analyze and computes the power spectral density of the noise through the mean-median Welch method. The second method uses the same data segment as the parameter estimation analysis, which potentially includes a gravitational wave signal, and obtains the whitening filter through a fit of the power spectrum of the data in terms of a sum of splines and Lorentzians. We compare these two methods and argue that the latter is more reliable for gravitational wave parameter estimation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا