ترغب بنشر مسار تعليمي؟ اضغط هنا

An analysis of the stationary operation of atomic clocks

133   0   0.0 ( 0 )
 نشر من قبل Martin Fraas
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Martin Fraas




اسأل ChatGPT حول البحث

We develop an abstract model of atomic clocks that fully describes the dynamics of repeated synchronization between a classical oscillator and a quantum reference. We prove existence of a stationary state of the model and study its dependence on the control scheme, the interrogation time and the stability of the oscillator. For unbiased atomic clocks, we derive a fundamental bound on atomic clocks long time stability for a given local oscillator noise. In particular, we show that for a local oscillator noise with integrated frequency variance scaling as $T^alpha$ for short times $T$, the optimal clock time variance scales as $F^{-(alpha +1)/(alpha +2)}$ with respect to the quantum Fisher information, $F$, associated to the quantum reference.


قيم البحث

اقرأ أيضاً

Motivated by the long-time transport properties of quantum waves in weakly disordered media, the present work puts random Schrodinger operators into a new spectral perspective. Based on a stationary random version of a Floquet type fibration, we redu ce the description of the quantum dynamics to a fibered family of abstract spectral perturbation problems on the underlying probability space. We state a natural resonance conjecture for these fibered operators: in contrast with periodic and quasiperiodic settings, this would entail that Bloch waves do not exist as extended states, but rather as resonant modes, and this would justify the expected exponential decay of time correlations. Although this resonance conjecture remains open, we develop new tools for spectral analysis on the probability space, and in particular we show how ideas from Malliavin calculus lead to rigorous Mourre type results: we obtain an approximate dynamical resonance result and the first spectral proof of the decay of time correlations on the kinetic timescale. This spectral approach suggests a whole new way of circumventing perturbative expansions and renormalization techniques.
We review proofs of a theorem of Bloch on the absence of macroscopic stationary currents in quantum systems. The standard proof shows that the current in 1D vanishes in the large volume limit under rather general conditions. In higher dimension, the total current across a cross-section does not need to vanish in gapless systems but it does vanish in gapped systems. We focus on the latter claim and give a self-contained proof motivated by a recently introduced index for many-body charge transport in quantum lattice systems having a conserved $U(1)$-charge.
327 - John Gough 2007
We introduce a concept of a quantum wide sense stationary process taking values in a C*-algebra and expected in a sub-algebra. The power spectrum of such a process is defined, in analogy to classical theory, as a positive measure on frequency space t aking values in the expected algebra. The notion of linear quantum filters is introduced as some simple examples mentioned.
In this paper, classical small perturbations against a stationary solution of the nonlinear Schrodinger equation with the general form of nonlinearity are examined. It is shown that in order to obtain correct (in particular, conserved over time) nonz ero expressions for the basic integrals of motion of a perturbation even in the quadratic order in the expansion parameter, it is necessary to consider nonlinear equations of motion for the perturbations. It is also shown that, despite the nonlinearity of the perturbations, the additivity property is valid for the integrals of motion of different nonlinear modes forming the perturbation (at least up to the second order in the expansion parameter).
We set up and study a coupled problem on stationary non-isothermal flow of electrorheological fluids. The problem consist in finding functions of velocity, pressure and temperature which satisfy the motion equations, the condition of incompressibilit y, the equation of the balance of thermal energy and boundary conditions. We introduce the notions of a $P$-generalized solution and generalized solution of the coupled problem. In case of the $P$-generalized solution the dissipation of energy is defined by the regularized velocity field, which leads to a nonlocal model. Under weak conditions, we prove the existence of the $P$ -generalized solution of the coupled problem. The existence of the generalized solution is proved under the conditions on smoothness of the boundary and on smallness of the data of the problem
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا