ترغب بنشر مسار تعليمي؟ اضغط هنا

Planck 2013 results. VI. High Frequency Instrument data processing

314   0   0.0 ( 0 )
 نشر من قبل Fran\\c{c}ois Bouchet R.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (hereafter HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545, and 857 GHz with an angular resolution ranging from 9.7 to 4.6 arcmin. The detector noise per (effective) beam solid angle is respectively, 10, 6, 12 and 39 microKelvin in HFI four lowest frequency channel (100--353 GHz) and 13 and 14 kJy/sr for the 545 and 857 GHz channels. Using the 143 GHz channel as a reference, these two high frequency channels are intercalibrated within 5% and the 353 GHz relative calibration is at the percent level. The 100 and 217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50 < l <2500), are intercalibrated at better than 0.2 %.



قيم البحث

اقرأ أيضاً

We describe the processing of the 336 billion raw data samples from the High Frequency Instrument (HFI) which we performed to produce six temperature maps from the first 295 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545 and 857 GHz with an angular resolution ranging from 9.9 to 4.4^2. The white noise level is around 1.5 {mu}K degree or less in the 3 main CMB channels (100--217GHz). The photometric accuracy is better than 2% at frequencies between 100 and 353 GHz and around 7% at the two highest frequencies. The maps created by the HFI Data Processing Centre reach our goals in terms of sensitivity, resolution, and photometric accuracy. They are already sufficiently accurate and well-characterised to allow scientific analyses which are presented in an accompanying series of early papers. At this stage, HFI data appears to be of high quality and we expect that with further refinements of the data processing we should be able to achieve, or exceed, the science goals of the Planck project.
This paper describes the processing applied to the Planck High Frequency Instrument (HFI) cleaned, time-ordered information to produce photometrically calibrated maps in temperature and (for the first time) in polarization. The data from the entire 2 .5 year HFI mission include almost five independent full-sky surveys. HFI observes the sky over a broad range of frequencies, from 100 to 857 GHz. To obtain the best accuracy on the calibration over such a large range, two different photometric calibration schemes have been used. The 545 and 857 GHz data are calibrated using models of planetary atmospheric emission. The lower frequencies (from 100 to 353 GHz) are calibrated using the time-variable cosmological microwave background dipole, which we call the orbital dipole. This source of calibration only depends on the satellite velocity with respect to the solar system. Using a CMB temperature of 2.7255 +/- 0.0006 K, it permits an independent measurement of the amplitude of the CMB solar dipole (3364.3 +/- 1.5 mu K) which is approximatively 1sigma higher than the WMAP measurement with a direction that is consistent between both experiments. We describe the pipeline used to produce the maps of intensity and linear polarization from the HFI timelines, and the scheme used to set the zero level of the maps a posteriori. We also summarize the noise characteristics of the HFI maps in the 2015 Planck data release and present some null tests to assess their quality. Finally, we discuss the major systematic effects and in particular the leakage induced by flux mismatch between the detectors that leads to spurious polarization signal.
We describe the data processing pipeline of the Planck Low Frequency Instrument (LFI) data processing centre (DPC) to create and characterize full-sky maps based on the first 15.5 months of operations at 30, 44 and 70 GHz. In particular, we discuss t he various steps involved in reducing the data, starting from telemetry packets through to the production of cleaned, calibrated timelines and calibrated frequency maps. Data are continuously calibrated using the modulation induced on the mean temperature of the cosmic microwave background radiation by the proper motion of the spacecraft. Sky signals other than the dipole are removed by an iterative procedure based on simultaneous fitting of calibration parameters and sky maps. Noise properties are estimated from time-ordered data after the sky signal has been removed, using a generalized least square map-making algorithm. A destriping code (Madam) is employed to combine radiometric data and pointing information into sky maps, minimizing the variance of correlated noise. Noise covariance matrices, required to compute statistical uncertainties on LFI and Planck products, are also produced. Main beams are estimated down to the -20 dB level using Jupiter transits, which are also used for the geometrical calibration of the focal plane.
This paper presents the High Frequency Instrument (HFI) data processing procedures for the Planck 2018 release. Major improvements in mapmaking have been achieved since the previous 2015 release. They enabled the first significant measurement of the reionization optical depth parameter using HFI data. This paper presents an extensive analysis of systematic effects, including the use of simulations to facilitate their removal and characterize the residuals. The polarized data, which presented a number of known problems in the 2015 Planck release, are very significantly improved. Calibration, based on the CMB dipole, is now extremely accurate and in the frequency range 100 to 353 GHz reduces intensity-to-polarization leakage caused by calibration mismatch. The Solar dipole direction has been determined in the three lowest HFI frequency channels to within one arc minute, and its amplitude has an absolute uncertainty smaller than $0.35mu$K, an accuracy of order $10^{-4}$. This is a major legacy from the HFI for future CMB experiments. The removal of bandpass leakage has been improved by extracting the bandpass-mismatch coefficients for each detector as part of the mapmaking process; these values in turn improve the intensity maps. This is a major change in the philosophy of frequency maps, which are now computed from single detector data, all adjusted to the same average bandpass response for the main foregrounds. Simulations reproduce very well the relative gain calibration of detectors, as well as drifts within a frequency induced by the residuals of the main systematic effect. Using these simulations, we measure and correct the small frequency calibration bias induced by this systematic effect at the $10^{-4}$ level. There is no detectable sign of a residual calibration bias between the first and second acoustic peaks in the CMB channels, at the $10^{-3}$ level.
This paper presents the characterization of the in-flight beams, the beam window functions and the associated uncertainties for the Planck Low Frequency Instrument (LFI). Knowledge of the beam profiles is necessary for determining the transfer functi on to go from the observed to the actual sky anisotropy power spectrum. The main beam distortions affect the beam window function, complicating the reconstruction of the anisotropy power spectrum at high multipoles, whereas the sidelobes affect the low and intermediate multipoles. The in-flight assessment of the LFI main beams relies on the measurements performed during Jupiter observations. By stacking the data from multiple Jupiter transits, the main beam profiles are measured down to -20 dB at 30 and 44 GHz, and down to -25 dB at 70 GHz. The main beam solid angles are determined to better than 0.2% at each LFI frequency band. The Planck pre-launch optical model is conveniently tuned to characterize the main beams independently of any noise effects. This approach provides an optical model whose beams fully reproduce the measurements in the main beam region, but also allows a description of the beams at power levels lower than can be achieved by the Jupiter measurements themselves. The agreement between the simulated beams and the measured beams is better than 1% at each LFI frequency band. The simulated beams are used for the computation of the window functions for the effective beams. The error budget for the window functions is estimated from both main beam and sidelobe contributions, and accounts for the radiometer bandshapes. The total uncertainties in the effective beam window functions are: 2% and 1.2% at 30 and 44 GHz, respectively (at $ell approx 600$), and 0.7% at 70 GHz (at $ell approx 1000$).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا